Akt, a serine/threonine protein kinase, is often hyper activated in breast and prostate cancers, but with poor prognosis. Allosteric inhibitors regulate aberrant kinase activity by stabilizing the protein in inactive conformation. Several natural compounds have been reported as inhibitors for kinases. In this study, to identify potential natural allosteric inhibitor for Akt1, we generated a seven-point pharmacophore model and screened it through natural compound library. Quercetin-7-O-β-d-glucopyranoside or Q7G was found to be the best among selected molecules based on its hydrogen bond occupancy with key allosteric residues, persistent polar contacts and salt bridges that stabilize Akt1 in inactive conformation and minimum binding free energy during molecular dynamics simulation. Q7G induced dose-dependent inhibition of breast cancer cells (MDA MB-231) and arrested them in G1 and sub-G phase. This was associated with down-regulation of anti-apoptotic protein Bcl-2, up-regulation of cleaved caspase-3 and PARP. Expression of p-Akt (Ser473) was also down-regulated which might be due to Akt1 inhibition in inactive conformation. We further confirmed the Akt1 and Q7G interaction which was observed to have a dissociation constant (K) of 0.246μM. With these computational, biological and thermodynamic studies, we suggest Q7G as a lead molecule and propose for its further optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2016.12.025DOI Listing

Publication Analysis

Top Keywords

inactive conformation
12
natural allosteric
8
allosteric inhibitor
8
inhibitor akt1
8
akt1
5
identification natural
4
allosteric
4
protein
4
akt1 protein
4
protein computational
4

Similar Publications

Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.

View Article and Find Full Text PDF

SF3B1 thermostability as an assay for splicing inhibitor interactions.

J Biol Chem

December 2024

Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, USA; Center for Molecular Biology of RNA, University of California, Santa Cruz, California, USA. Electronic address:

The spliceosome protein, SF3B1 associates with U2 snRNP during early spliceosome assembly for pre-mRNA splicing. Frequent somatic mutations in SF3B1 observed in cancer necessitates characterization of its role in identifying the branchpoint adenosine of introns. Remarkably, SF3B1 is the target of three distinct natural product drugs, each identified by their potent anti-tumor properties.

View Article and Find Full Text PDF

The cannabinoid receptor 1 (CB1) is an essential component of the endocannabinoid system, responsible for regulating various physiological processes such as pain, mood, and appetite. Despite increasing interest in the therapeutic potential of CB1 modulators, the precise mechanisms by which small molecules modulate receptor activity-particularly without fully transitioning between active and inactive states-remain partially understood. In this study, the complexity of CB1-ligand interactions was evaluated for the inactive CB1 state.

View Article and Find Full Text PDF

A critical step in infections is the attachment of many microorganisms to host cells using lectins that bind surface glycans, making lectins promising antimicrobial targets. Upon binding mannosylated glycans, FimH, the most studied lectin adhesin of type 1 fimbriae in , undergoes an allosteric transition from an inactive to an active conformation that can act as a catch-bond. Monoclonal antibodies that alter FimH glycan binding in various ways are available, but the mechanisms of these antibodies remain unclear.

View Article and Find Full Text PDF

Decoding KRAS dynamics: Exploring the impact of mutations and inhibitor binding.

Arch Biochem Biophys

December 2024

Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India. Electronic address:

KRAS (Kirsten rat sarcoma viral oncogene homologue), the most common mutated protein in human cancers, is the leading cause of morbidity and mortality. Before Sotorasib (AMG-510) was approved for non-small cell lung cancer treatment in 2020, the oncogenic KRAS mutations were believed to be non-druggable. High-resolution X-ray crystal structures of GDP-bound KRAS mutants with and without inhibitor are resolved and deposited in the Protein Data Bank (PDB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!