A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Resistive Training and Molecular Regulators of Vascular-Metabolic Risk in Chronic Stroke. | LitMetric

Resistive Training and Molecular Regulators of Vascular-Metabolic Risk in Chronic Stroke.

J Stroke Cerebrovasc Dis

GRECC, MERCE, Baltimore, Maryland; Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland.

Published: May 2017

Background: Peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC-1α) gene and Sirtuin-1 (SIRT-1) respond to physiological stimuli and regulate insulin resistance. Inflammatory markers tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), C-reactive protein (CRP), and the soluble forms of intracellular adhesion molecule (sICAM-1) and vascular CAM-1 (sVCAM-1) are associated with increased risk of diabetes and coronary heart disease. Resistive training (RT) reduces hyperinsulinemia and improves insulin action in chronic stroke. Yet, the molecular mechanisms for this are unknown. This study will determine the effects of RT on skeletal muscle PGC-1α and SIRT-1 mRNA expression and inflammatory and vascular markers.

Methods: Stroke survivors (50-76 years) underwent a fasting blood draw for measurement of TNF-α, IL-6, CRP, serum amyloid A, sICAM-1, sVCAM-1, and bilateral vastus lateralis biopsies before and after RT. Participants were also assessed using bilateral multislice thigh computed tomography scans from the knee to the hip, a total body scan by dual-energy X-ray absorptiometry, and 1-repetition maximum strength testing. Subjects performed 2 sets of 3 lower extremity RT exercises 3 times per week for 12 weeks.

Results: Bilateral leg press and leg extension strength increased ~30-50% with RT (P < .001). Body weight, total body fat mass, and fat-free mass did not change. Thigh muscle area and volume increased in both legs (P < .05). Nonparetic muscle PGC-1α mRNA expression increased 14% (P < .05) after RT and SIRT-1 mRNA decreased 24% (P < .05) and 31% (P < .01) in paretic and nonparetic muscles. There were no significant changes in plasma inflammation with training.

Discussion: RT in chronic stroke induces changes in key skeletal muscle regulators of metabolism, without effecting circulating inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409877PMC
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.003DOI Listing

Publication Analysis

Top Keywords

resistive training
8
chronic stroke
8
training molecular
4
molecular regulators
4
regulators vascular-metabolic
4
vascular-metabolic risk
4
risk chronic
4
stroke background
4
background peroxisome
4
peroxisome proliferator-activated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!