Background: The human body has an extensive capacity to regenerate bone tissue after trauma. However large defects such as long bone fractures of the lower limbs cannot be restored without intervention and often lead to nonunion. Therefore, the aim of the present study was to assess the pool and biological functions of human mesenchymal stromal cells (hMSCs) isolated from different bone marrow locations of the lower limbs and to identify novel strategies to prime the cells prior to their use in bone fracture healing. Following, bone marrow from the ilium, proximal femur, distal femur and proximal tibia was aspirated and the hMSCs isolated. Bone marrow type, volume, number of mononuclear cells/hMSCs and their self-renewal, multilineage potential, extracellular matrix (ECM) production and surface marker profiling were analyzed. Additionally, the cells were primed to accelerate bone fracture healing either by using acoustic stimulation or varying the initial hMSCs isolation conditions.
Results: We found that the more proximal the bone marrow aspiration location, the larger the bone marrow volume was, the higher the content in mononuclear cells/hMSCs and the higher the self-renewal and osteogenic differentiation potential of the isolated hMSCs were. Acoustic stimulation of bone marrow, as well as the isolation of hMSCs in the absence of fetal bovine serum, increased the osteogenic and ECM production potential of the cells, respectively.
Conclusion: We showed that bone marrow properties change with the aspiration location, potentially explaining the differences in bone fracture healing between the tibia and the femur. Furthermore, we showed two new priming methods capable of enhancing bone fracture healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154008 | PMC |
http://dx.doi.org/10.1186/s12896-016-0318-1 | DOI Listing |
Adv Sci (Weinh)
January 2025
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.
Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Honghuagang District, Guizhou, China.
With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.
Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.
Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!