Context: Radix Bupleuri has been used in traditional Chinese medicine for over 2000 years with functions of relieving exterior syndrome, clearing heat, regulating liver-qi, and lifting yang-qi. More natural active compounds, especially saikosaponins, have been isolated from Radix Bupleuri, which possess various valuable pharmacological activities.

Objective: To summarize the current knowledge on pharmacological activities, mechanisms and applications of extracts and saikosaponins isolated from Radix Bupleuri, and obtain new insights for further research and development of Radix Bupleuri.

Methods: PubMed, Web of Science, Science Direct, Research Gate, Academic Journals and Google Scholar were used as information sources through the inclusion of the search terms 'Radix Bupleuri', 'Bupleurum', 'saikosaponins', 'Radix Bupleuri preparation', and their combinations, mainly from the year 2008 to 2016 without language restriction. Clinical preparations containing Radix Bupleuri were collected from official website of China Food and Drug Administration (CFDA).

Results And Conclusion: 296 papers were searched and 128 papers were reviewed. A broad spectrum of in vitro and in vivo research has proved that Radix Bupleuri extracts, saikosaponin a, saikosaponin d, saikosaponin c, and saikosaponin b, exhibit evident anti-inflammatory, antitumor, antiviral, anti-allergic, immunoregulation, and neuroregulation activities mainly through NF-κB, MAPK or other pathways. 15 clinical preparations approved by CFDA remarkably broaden the application of Radix Bupleuri. The main side effect of Radix Bupleuri is liver damage when the dosage is excess, which indicates that the maximum tolerated dose is critical for clinical use of Radix Bupleuri extract and purified compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130612PMC
http://dx.doi.org/10.1080/13880209.2016.1262433DOI Listing

Publication Analysis

Top Keywords

radix bupleuri
36
isolated radix
12
saikosaponin saikosaponin
12
radix
10
bupleuri
10
saikosaponins isolated
8
clinical preparations
8
systematic review
4
review active
4
active saikosaponins
4

Similar Publications

Exploring the mechanism of Radix Bupleuri in the treatment of depression combined with SARS-CoV-2 infection through bioinformatics, network pharmacology, molecular docking, and molecular dynamic simulation.

Metab Brain Dis

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.

Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.

Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.

View Article and Find Full Text PDF

Saikosaponin A (SSA), the primary active monomer derived from the Radix bupleuri, demonstrates a diverse array of pharmacological activities, including anti-inflammatory, antitumor, analgesic, anti-fibrotic, antidepressant, and immune-modulating properties. Despite its potential therapeutic impact on various human diseases, comprehensive studies exploring SSA's efficacy in these contexts remain limited. This review synthesizes the current research landscape regarding SSA's therapeutic applications across different diseases, highlighting critical insights to overcome existing limitations and clinical challenges.

View Article and Find Full Text PDF

Radix Bupleuri-Radix Paeoniae Alba herb pair (RB-RPA) is the fundamental medication combination of many classic antidepressant prescriptions, and RB-RPA's antidepressant effect is well established. For an extended period, the involvement of intestinal flora in the progression of depression has been widely acknowledged. However, it remains unclear whether RB-RPA could modulate intestinal microbiota disturbances and metabolic abnormalities induced by depression.

View Article and Find Full Text PDF

Saikogenin A improves ethanol-induced liver injury by targeting SIRT1 to modulate lipid metabolism.

Commun Biol

November 2024

Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China.

Article Synopsis
  • * Saikosaponin A (SSa), a compound from Radix Bupleuri, shows potential in protecting the liver due to its anti-inflammatory and antioxidant effects, but its impact on ALD is not well-explored.
  • * Research indicates that SSa and its metabolite Saikogenin A (SGA) work through specific liver signaling pathways and can protect liver cells from ethanol damage, positioning SGA as a promising candidate for ALD therapy.
View Article and Find Full Text PDF

Saikosaponin-b2 Regulates the Proliferation and Apoptosis of Liver Cancer Cells by Targeting the MACC1/c-Met/Akt Signalling Pathway.

Adv Pharmacol Pharm Sci

November 2024

Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China.

Saikosaponin-b2 (SS-b2), an active ingredient derived from the root of Radix Bupleuri, possesses antitumour, anti-inflammatory, antioxidative and hepatoprotective properties. We investigated the inhibition of tumour proliferation by SS-b2 and the underlying molecular mechanisms, including the MACC1/p-c-Met/p-Akt pathway expression in HepG2 liver cancer cells and H22 tumour-bearing mice. Animal experiments showed that SS-b2 significantly decreased the levels of MACC1, p-c-MET and p-Akt in tumour tissue transplanted with H22 liver cancer cells in mice, while it increased the expression of p-BAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!