A drop array culture for patterning adherent mouse embryonic stem cell-derived neurospheres.

J Tissue Eng Regen Med

Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.

Published: January 2018

New therapeutic approaches for repairing an injured or degenerating nervous system have accelerated the development of methods to generate populations of neurons derived from various stem cell sources efficiently. Many of these methods require the generation of neurospheres. Here a simple technique is described for creating an array of adherent mouse embryonic stem cell (mESC)-derived neurospheres using a conventional plastic culture dish and a patterning template. mESC-derived neurospheres are confined to circular (4-mm diameter), gel-coated regions within an array. The adherent neurosphere arrays require 3 days to prepare from an mESC source; they can be maintained in 15 μl drops of medium, and exhibit extensive neurite elaboration after 8 days of cultivation. Additionally, the potential of treating the adherent neurospheres in selected drops of an array is demonstrated with a variety of differentiation-inducing reagents and subsequently individually analysing such neurospheres for gene expression, protein levels and morphological development. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987193PMC
http://dx.doi.org/10.1002/term.2389DOI Listing

Publication Analysis

Top Keywords

adherent mouse
8
mouse embryonic
8
embryonic stem
8
stem cell
8
array adherent
8
mesc-derived neurospheres
8
neurospheres
6
drop array
4
array culture
4
culture patterning
4

Similar Publications

Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.

Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Background: Sepsis is characterized by an excessive immune response. Modulation of the immune response, particularly macrophage polarization, may provide therapeutic benefit. The effects of Caerulomycin A (caeA), a known STAT1 phosphorylation inhibitor, on macrophage polarization and inflammatory markers were explored using a lipopolysaccharide (LPS)-induced sepsis mouse model.

View Article and Find Full Text PDF

Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.

Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.

View Article and Find Full Text PDF

This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.

View Article and Find Full Text PDF

Purpose: This study aimed to compare systemic immune responses and metastatic effects induced by radiofrequency ablation (RFA) and irreversible electroporation (IRE) in murine tumor models. We assessed cytokine production, growth of treated and untreated metastatic tumors, and synergy with immune checkpoint inhibitors (ICIs).

Materials And Methods: Hep55.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!