Co-evolution of host-parasitoid interactions is determined by the costs of host resistance, which received empirical evidence, and the costs of parasitoid virulence, which have been mostly hypothesized. Asobara tabida is a parasitoid, which mainly parasitizes Drosophila melanogaster and D. subobscura, the first species being able to resist to the parasitoid development while the second species is not. To parasitize resistant hosts, including D. melanogaster, A. tabida develops sticky eggs, which prevent encapsulation, but this virulence mechanism may be costly. Interindividual and interpopulation variation in the proportion of sticky eggs respectively allowed us to (i) artificially select and compare life-history traits of a virulent and a nonvirulent laboratory strain, and (ii) compare a virulent and a nonvirulent field strain, to investigate the hypothetical costs of virulence. We observed strong differences between the 2 laboratory strains. The nonvirulent strain invested fewer resources in reproduction and walked less than the virulent one but lived longer. Concerning the field strains, we observed that the nonvirulent strain had larger wings while the virulent one walked more and faster. All together, our results suggest that virulence may not always be costly, but rather that different life histories associated with different levels of virulence may coexist at both intra- and interpopulation levels.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-7917.12428DOI Listing

Publication Analysis

Top Keywords

life-history traits
8
asobara tabida
8
sticky eggs
8
virulent nonvirulent
8
nonvirulent strain
8
virulence
6
response life-history
4
traits artificial
4
artificial natural
4
natural selection
4

Similar Publications

Background: In infected hosts, immune responses trigger a systemic energy reallocation away from energy storage and growth, to fuel a costly defense program. The exact energy costs of immune defense are however unknown in general. Life history theory predicts that such costs underpin trade-offs between host disease resistance and other fitness related traits, yet this has been seldom assessed.

View Article and Find Full Text PDF

The Genomics Revolution Drives a New Era in Entomology.

Annu Rev Entomol

January 2025

Department of Entomology, China Agricultural University, Beijing, China; email:

Thanks to the fast development of sequencing techniques and bioinformatics tools, sequencing the genome of an insect species for specific research purposes has become an increasingly popular practice. Insect genomes not only provide sets of gene sequences but also represent a change in focus from reductionism to systemic biology in the field of entomology. Using insect genomes, researchers are able to identify and study the functions of all members of a gene family, pathway, or gene network associated with a trait of interest.

View Article and Find Full Text PDF

The balance between mating benefits and costs shapes reproductive strategies and life history traits across animal species. For biological control programs, understanding how mating rates influence life history traits is essential for optimising population management and enhancing predator efficacy. This study investigates the impact of mating opportunity availability, delayed mating, and male mating history (copulation frequency) on the lifespan (both sexes), female reproductive traits (duration of oviposition and of pre- and post-oviposition periods, and lifetime oviposition), and offspring quality (egg size and offspring survival) of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), an important biological control agent against spider mites.

View Article and Find Full Text PDF

Deep-sea shrimps from the family Alvinocarididae are prominent inhabitants of chemosynthesis-based habitats worldwide. However, their genetic diversity and population connectivity remain poorly understood due to limited sampling. To fill these knowledge gaps, we compared the population genetics of two vent- and seep-dwelling alvinocaridid species with overlapped geographic ranges between the South China Sea and the Manus Basin.

View Article and Find Full Text PDF

Genetic insights into the first detection of Paracoccus marginatus (Hemiptera: Pseudococcidae) in Australia.

J Insect Sci

January 2025

Biosecurity and Animal Welfare, Department of Agriculture and Fisheries, Berrimah Farm Science Precinct, Darwin, Northern Territory 0810, Australia.

Species spread in a new environment is often associated with founders' effect, and reduced effective population size and genetic diversity. However, reduced genetic diversity does not necessarily translate to low establishment and spread potential. Paracoccus marginatus Williams and Granara de Willink is a polyphagous pest that has invaded 4 continents in around 34 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!