The Dewar-Chatt-Duncanson (DCD) model provides a successful theoretical framework to describe the nature of the chemical bond in transition-metal compounds and is especially useful in structural chemistry and catalysis. However, how to actually measure its constituents (substrate-to-metal donation and metal-to-substrate back-donation) is yet uncertain. Recently, we demonstrated that the DCD components can be neatly disentangled and the π back-donation component put in strict correlation with some experimental observables. In the present work we make a further crucial step forward, showing that, in a large set of charged and neutral N-heterocyclic carbene complexes of gold(I), a specific component of the NMR chemical shift tensor of the carbenic carbon provides a selective measure of the σ donation. This work opens the possibility of 1) to characterize unambiguously the electronic structure of a metal fragment (LAu(I) in this case) by actually measuring its σ-withdrawing ability, 2) to quickly establish a comparative trend for the ligand trans effect, and 3) to achieve a more rigorous control of the ligand electronic effect, which is a key aspect for the design of new catalysts and metal complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201605502DOI Listing

Publication Analysis

Top Keywords

c nmr spectroscopy
4
spectroscopy n-heterocyclic
4
n-heterocyclic carbenes
4
carbenes selectively
4
selectively probe
4
probe donation
4
donation goldi
4
goldi complexes
4
complexes dewar-chatt-duncanson
4
dewar-chatt-duncanson dcd
4

Similar Publications

This research examined the distinction between organic and conventional mango fruits, chips, and juice using portable near-infrared (NIR) spectroscopy. A comprehensive analysis was conducted on a sample of 100 mangoes (comprising 50 organic and 50 conventional) utilising a portable NIR spectrometer that spans a wavelength range from 900 to 1700 nm. The mangoes were assessed in their entirety and their juice and chip forms.

View Article and Find Full Text PDF

High-Performance TiCT-MXene/Mycelium Hybrid Membrane for Efficient Lead Remediation: Design and Mechanistic Insights.

ACS Appl Mater Interfaces

January 2025

Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.

This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

This study used functional near-infrared spectroscopy (fNIRS) to measure aspects of the speech discrimination ability of sleeping infants. We examined the morphology of the fNIRS response to three different speech contrasts, namely "Tea/Ba," "Bee/Ba," and "Ga/Ba." Sixteen infants aged between 3 and 13 months old were included in this study and their fNIRS data were recorded during natural sleep.

View Article and Find Full Text PDF

Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.

Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).

View Article and Find Full Text PDF

Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!