Here, we describe the production of stable isotope-labeled human immunoglobulin G1 ([ C]-hIgG1) using [ C]-L-lysine/arginine-labeled hIgG1. The fermentation process was run in shake flasks containing labeled arginine and lysinethat were incorporated into the produced recombinant hIgG1. The [ C]-hIgG1 was purified, and label incorporation was determined to be >99% at all lysine and arginine moieties. Sequence coverage was confirmed by peptide mapping. [ C]-hIgG1 was then used as an internal standard (IS) for the development of a liquid chromatography-tandem mass spectrometry method applicable to the quantitative analysis of all human types of hIgG1 in rat serum. Four conserved peptides, namely, GPSVFPLAPSSK, TTPPVLDSDGSFFLYSK, VVSVLTVLHQDWLNGK, and FNWYVDGVEVHNAK, originating from different parts of the fraction crystallizable region of hIgG1, were used for quantitation of hIgG1 in rat serum. The calibration curves with a coefficient of determination (r ) between 0.9950 and 0.9962 resulting from the peak area ratio of each peptide to its respective labeled IS were reproducible. A mean bias within ±20.0% of the nominal values and a precision of ≤20.0 % were obtained for the calibration standards and quality control samples for each peptide. [ C]-hIgG1 was shown as a suitable IS for quantitative hIgG1 analysis in preclinical species by LC-MS/MS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jlcr.3486DOI Listing

Publication Analysis

Top Keywords

stable isotope-labeled
8
isotope-labeled human
8
human immunoglobulin
8
mass spectrometry
8
higg1 rat
8
rat serum
8
higg1
6
production application
4
application high
4
high quality
4

Similar Publications

Mass spectrometry (MS) is the only instrumental analytical technology that utilizes unique properties of matter, that is, its mass () and electrical charge (). In the magnetic and/or electric fields of mass spectrometers, electrically charged native or chemically modified (millions) endogenous and (thousands) exogenous substances, the analytes, are separated according to their characteristic mass-to-charge ratio (/) values. Mass spectrometers coupled to gas chromatographs (GC) or liquid chromatographs (LC), the so-called hyphenated techniques, i.

View Article and Find Full Text PDF

L-arginine: glycine amidinotransferase (AGAT) gained academic interest as the rate-limiting enzyme in creatine biosynthesis and its role in the regulation of creatine homeostasis. Of clinical relevance is the diagnosis of patients with AGAT deficiency but also the potential role of AGAT as therapeutic target for the treatment of another creatine deficiency syndrome, guanidinoacetate N-methyltransferase (GAMT) deficiency. Applying a stable isotope-labeled substrate method, we utilized ARG 15N (ARG-δ2) and GLY 13C15N (GLY-δ3) to determine the rate of 1,2-13C,15N guanidinoacetate (GAA-δ5) formation to assess AGAT activity in various mouse tissue samples and human-derived cells.

View Article and Find Full Text PDF

Unveiling bisphenol A-degrading bacteria in activated sludge through plating and C isotope labeled single-cell Raman spectroscopy.

J Hazard Mater

December 2024

CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:

Bacteria play a crucial role in biodegradation of recalcitrant endocrine-disrupting compounds (EDCs), such as bisphenol A (BPA). However, in-situ identification of BPA-degrading bacteria remains technically challenging. Herein, we employed a conventional plating isolation (PI) and a new single cell Raman spectroscopy coupled with stable isotope probing (Raman-SIP) approach to enrich and identify BPA-degrading bacteria from activated sludge (AS).

View Article and Find Full Text PDF

CKD is frequently diagnosed only after a significant progression. GFR is the most common indicator of kidney function but is limited in detecting early CKD cases and distinguishing glomerular, tubular, and global CKD. Aiming to provide a glomeruli specific biomarker assay, we developed a peptide immunoaffinity targeted mass spectrometry method for the quantitation of three podocyte specific proteins in human urine: nephrin, podocalyxin, and podocin.

View Article and Find Full Text PDF

Determination of microcystins and nodularins in ambient freshwater and seawater by liquid chromatography-mass spectrometry including toxin screening and identification.

Anal Chim Acta

January 2025

HAB Monitoring & Reference Branch, Stressor Detection and Impacts Division, National Centers for Coastal Ocean Science, NOAA National Ocean Service, 331 Fort Johnson Road, Charleston, SC, 29412, USA.

Background: Microcystins (MCs) and nodularins (NODs) produced by cyanobacteria occur in ambient freshwaters and across the freshwater-marine continuum, and pose health threats through drinking and recreational waters, as well as food resources. Approximately 300 MC and NOD toxins have been published, but less than 15 of them are commercially available as toxin standards. Our aim herein was to rapidly identify and quantify all toxin congeners, including those without standards, in water samples even at low abundance by reversed-phase solid phase extraction (SPE)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) to provide insights into toxin levels and potential toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!