A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of approaches for incorporating new information into existing risk prediction models. | LitMetric

We compare the calibration and variability of risk prediction models that were estimated using various approaches for combining information on new predictors, termed 'markers', with parameter information available for other variables from an earlier model, which was estimated from a large data source. We assess the performance of risk prediction models updated based on likelihood ratio (LR) approaches that incorporate dependence between new and old risk factors as well as approaches that assume independence ('naive Bayes' methods). We study the impact of estimating the LR by (i) fitting a single model to cases and non-cases when the distribution of the new markers is in the exponential family or (ii) fitting separate models to cases and non-cases. We also evaluate a new constrained maximum likelihood method. We study updating the risk prediction model when the new data arise from a cohort and extend available methods to accommodate updating when the new data source is a case-control study. To create realistic correlations between predictors, we also based simulations on real data on response to antiviral therapy for hepatitis C. From these studies, we recommend the LR method fit using a single model or constrained maximum likelihood. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8182952PMC
http://dx.doi.org/10.1002/sim.7190DOI Listing

Publication Analysis

Top Keywords

risk prediction
16
prediction models
12
data source
8
single model
8
cases non-cases
8
constrained maximum
8
maximum likelihood
8
risk
5
comparison approaches
4
approaches incorporating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!