Evolutionary and Functional Diversification of the Vitamin D Receptor-Lithocholic Acid Partnership.

PLoS One

Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America.

Published: June 2017

The evolution, molecular behavior, and physiological function of nuclear receptors are of particular interest given their diverse roles in regulating essential biological processes. The vitamin D receptor (VDR) is well known for its canonical roles in calcium homeostasis and skeletal maintenance. Additionally, VDR has received an increased amount of attention due to the discovery of numerous non-calcemic functions, including the detoxification of lithocholic acid. Lithocholic acid is a toxic metabolite of chenodeoxycholic acid, a primary bile acid. The partnership between the VDR and lithocholic acid has been hypothesized to be a recent adaptation that evolved to mediate the detoxification and elimination of lithocholic acid from the gut. This partnership is speculated to be limited to higher vertebrates (birds and mammals), as lower vertebrates do not synthesize the parent compound of lithocholic acid. However, the molecular functions associated with the observed insensitivity of basal VDRs to lithocholic acid have not been explored. Here we characterize canonical nuclear receptor functions of VDRs from select species representing key nodes in vertebrate evolution and span a range of bile salt phenotypes. Competitive ligand binding assays revealed that the receptor's affinity for lithocholic acid is highly conserved across species, suggesting that lithocholic acid affinity is an ancient and non-adaptive trait. However, transient transactivation assays revealed that lithocholic acid-mediated VDR activation might have evolved more recently, as the non-mammalian receptors did not respond to lithocholic acid unless exogenous coactivator proteins were co-expressed. Subsequent functional assays indicated that differential lithocholic acid-mediated receptor activation is potentially driven by differential protein-protein interactions between VDR and nuclear receptor coregulator proteins. We hypothesize that the vitamin D receptor-lithocholic acid partnership evolved as a by-product of natural selection on the ligand-receptor partnership between the vitamin D receptor and the native VDR ligand: 1α,25-dihydroxyvitamin D3, the biologically active metabolite of vitamin D3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5152921PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168278PLOS

Publication Analysis

Top Keywords

lithocholic acid
36
acid
13
acid partnership
12
lithocholic
11
vitamin receptor-lithocholic
8
receptor-lithocholic acid
8
vitamin receptor
8
nuclear receptor
8
assays revealed
8
lithocholic acid-mediated
8

Similar Publications

Effects of Several Bile Acids on the Production of Virulence Factors by .

Life (Basel)

December 2024

Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, IUT, 55 Rue Saint Germain, 27000 Evreux, France.

The presence of bile acids in the cystic fibrosis patient's lungs contributes to an increase in the inflammatory response, in the dominance of pathogens, as well as in the decline in lung function, increasing morbidity. The aim of this study is to determine the effects of exposure of to primary and secondary bile acids on the production of several virulence factors which are involved in its pathogenic power. The presence of bile acids in the bacterial culture medium had no effect on growth up to a concentration of 1 mM.

View Article and Find Full Text PDF

The development of a methodology for the synthesis of new compounds with antitumor activity represents a significant and priority task within the field of medicinal chemistry. As a continuation of our research group's earlier studies on the antitumor activity of ionic derivatives of natural compounds, we have synthesized a series of previously undescribed pyrazole ionic compounds through a series of transformations of lithocholic acid methyl ester. To investigate the biological activity of the newly synthesized lithocholic acid derivatives, a series of modern flow cytometry techniques were employed to assess their cytotoxic activity, effects on the cell cycle, and induction of apoptosis.

View Article and Find Full Text PDF

Unlabelled: Members of the gut microbiome encounter a barrage of host- and microbe-derived microbiocidal factors that must be overcome to maintain fitness in the intestine. The long-term stability of many gut microbiome strains within the microbiome suggests the existence of strain-specific strategies that have evolved to foster resilience to such insults. Despite this, little is known about the mechanisms that mediate this resistance.

View Article and Find Full Text PDF

Objective: Bile acids may contribute to pathophysiologic markers of Alzheimer's disease, including disruptions of the executive control network (ECN) and the default mode network (DMN). Cognitive dysfunction is common in major depressive disorder (MDD), but whether bile acids impact these networks in MDD patients is unknown.

Methods: Resting state functional magnetic resonance imaging (fMRI) scans and blood measures of four bile acids from 74 treatment-naïve adults with MDD were analyzed.

View Article and Find Full Text PDF

Objective: The objective of this study is to investigate the ability of Ramulus Mori (Sangzhi) alkaloid tablets (SZ-A) to ameliorate obesity and lipid metabolism disorders in rats subjected to a high-fat diet (HFD) through metagenomics, untargeted lipidomics, targeted metabolism of bile acid (BA), and BA pathways, providing a novel perspective on the management of metabolic disorders.

Methods: In this research, HFD-fed rats were concurrently administered SZ-A orally. We measured changes in body weight (BW), blood lipid profiles, and liver function to assess therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!