In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF single crystals at the cobalt M-edge at FERMI FEL (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5150230PMC
http://dx.doi.org/10.1038/srep38796DOI Listing

Publication Analysis

Top Keywords

resonant inelastic
8
inelastic x-ray
8
x-ray scattering
8
scattering rixs
8
externally seeded
8
rixs
5
extreme ultraviolet
4
ultraviolet resonant
4
rixs seeded
4
seeded free-electron
4

Similar Publications

Time evolution of a pumped molecular magnet-A time-resolved inelastic neutron scattering study.

Proc Natl Acad Sci U S A

January 2025

William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.

Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.

View Article and Find Full Text PDF

Raman spectroscopy has been proven to be a fast, convenient, and nondestructive technique for advancing our understanding of biological systems. The Raman effect originates from the inelastic scattering of light which directly probe vibration/rotational states in biological molecules and materials. Despite numerous advantages over infrared spectroscopy and continuous technical as well as operational improvement in Raman spectroscopy, an advanced development of the device and more applications have become possible.

View Article and Find Full Text PDF

Study of the N2 vibrational relaxation behaviors via the CO rovibrational thermometry.

J Chem Phys

December 2024

Deep Space Exploration Laboratory/Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China.

This paper performed a comprehensive study of the thermal nonequilibrium effects of CO/Ar mixtures with various degrees of N2 additions and probed the N2 relaxation behaviors via the CO rovibrational thermometry. The rovibrational temperature time histories of shock-heated CO/N2/Ar mixtures were measured via a laser-absorption technique, and the corresponding vibrational relaxation data were summarized at 1890-3490 K. The measured results were compared with predictions from the Schwartz-Slawsky-Herzfeld (SSH) formula and the state-to-state (StS) approach (treating CO and N2 as pseudo-species).

View Article and Find Full Text PDF

The Heisenberg-RIXS instrument at the European XFEL.

J Synchrotron Radiat

January 2025

Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.

Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.

View Article and Find Full Text PDF

Proton transfer processes form the foundation of many chemical processes. In excited-state intramolecular proton transfer (ESIPT) processes, ultrafast proton transfer is impulsively initiated through light. Here, we explore time-dependent coupled atomic and electronic motions during and following ESIPT through computational time-resolved resonant inelastic X-ray scattering (RIXS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!