Avian somatosensory system: II. Ascending projections of the dorsal column and external cuneate nuclei in the pigeon.

J Comp Neurol

Department of Anatomy, School of Medicine, University of Auckland, New Zealand.

Published: September 1989

The ascending projections of the dorsal column and external cuneate nuclei (DCN/CuE) in the pigeon were investigated in anterograde tracing experiments by using autoradiography or wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). The results show that the majority of ascending projections decussate via internal arcuate fibers to form a contralateral medial lemniscus which ascends in a ventral position. In the brainstem, terminal fields were observed in the ventral lamella of the inferior olive (OI), the parabrachial nuclei (PB) of the dorsolateral pons, the intercollicular nucleus (ICo) of the midbrain, and the nucleus pretectalis diffusus (PD). In the diencephalon there were terminal fields in the strata cellulare externum and internum (SCE and SCI) of the caudal hypothalamus; in the intercalated (ICT), ventrolateral (VLT), and reticular nuclei of the ventral thalamus; in the nuclei principalis precommissuralis (PPC), spiriform medialis (SpM), and dorsolateralis posterior, pars caudalis (cDLP) of the caudal thalamus; and in the nuclei dorsalis intermedius ventralis anterior (DIVA), dorsolateralis posterior, pars rostralis (rDLP), dorsolateralis anterior (DLA), and dorsolateralis anterior, pars medialis (DLM) of the rostrodorsal thalamus. The origins of these projections within the DCN/CuE complex were verified in retrograde tracing experiments with WGA-HRP and were found to be partly differentiable with respect to their targets. The projections to DIVA, rDLP, DLA, DLM, cDLP, and SpM arise from all rostrocaudal levels of the DCN/CuE complex; those to ICo arise from caudomedial nuclear regions, while those to the hypothalamus and ventral thalamus arise from rostrolateral nuclear regions. Projections to PB arise from lamina I neurons of the dorsal horn of upper cervical spinal cord segments and from CuE. No evidence was found of a projection to the cerebellum. The distribution of the cells of origin of the medial lemniscus (ML) within the DCN/CuE complex was found to be largely coextensive with the areas of termination of primary spinal (Wild: J. Comp. Neurol. 240:377-395, '85) and some trigeminal (Dubbledam and Karten: J. Comp. Neurol. 180:661-678, '78) afferents. Furthermore, the areas of termination of the ML within the rostrodorsal and caudal thalamus are also either coextensive or closely associated with nuclei which provide a somatosensory projection to separate regions of the telencephalon (Wild: Brain Res. 412:205-223, '87). There are thus clear similarities in the overall pattern of somatosensory projections in the pigeon and in many mammalian species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.902870102DOI Listing

Publication Analysis

Top Keywords

ascending projections
12
dcn/cue complex
12
projections dorsal
8
dorsal column
8
column external
8
external cuneate
8
cuneate nuclei
8
tracing experiments
8
medial lemniscus
8
terminal fields
8

Similar Publications

Role of the Dorsal Cortex of the Inferior Colliculus in the Precedence Effect.

Med Sci Monit

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.

BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear.

View Article and Find Full Text PDF

Auditory perception is established through experience-dependent stimuli exposure during sensitive developmental periods; however, little is known regarding the structural development of the central auditory pathway in humans. The present study characterized the regional developmental trajectories of the ascending auditory pathway from the brainstem to the auditory cortex from infancy through adolescence using a novel diffusion MRI-based tractography approach and along-tract analyses. We used diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) to quantify the magnitude and timing of auditory pathway microstructural maturation.

View Article and Find Full Text PDF

Peripheral and central innervation pattern of mechanosensory neurons in the trigeminal ganglion.

Neuroscience

January 2025

Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

The trigeminal ganglion (TG) comprises primary sensory neurons responsible for orofacial sensations, subsequently projecting to the trigeminal nuclei in the brainstem. However, the circuit basis of nasal mechanosensation is not well characterized. Here we elucidate the anatomical organization of both peripheral and central projections of the TG.

View Article and Find Full Text PDF

A fundamental characteristic of extreme precipitation events (EPEs) is their horizontal scale. This horizontal scale can influence the intensity of an EPE through its effect on the timescale of an EPE as well as its effect on the strength of convective feedbacks. Thus, to have confidence in future projections of extreme precipitation, the horizontal scales of EPEs in global climate models (GCMs) should be evaluated.

View Article and Find Full Text PDF

Ulcer-like projections (ULPs) with a tendency to enlarge are at risk of aortic events such as new dissection, aneurysmal formation, or rupture and require therapeutic intervention. However, what should be done after open chest surgery when standard thoracic endovascular aortic repair (TEVAR) cannot be performed is debatable. Here, we present a case of coil embolization of a newly enlarged ULP that was not amenable to TEVAR following a hemiarch aortic arch repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!