Centromeres are specified by sequence-independent epigenetic mechanisms, and the centromere position may drift at each cell cycle, but once this position is specified, it may not be frequently moved. Currently, it is unclear whether the centromere position is stable. To address this question, we systematically analyzed the position of nonrepetitive centromeres in 21 independent clones isolated from a laboratory stock of chicken DT40 cells using chromatin immunoprecipitation combined with massive parallel sequencing analysis with anti-CENP-A antibody. We demonstrated that the centromere position varies among the clones, suggesting that centromere drift occurs during cell proliferation. However, when we analyzed this position in the subclones obtained from one isolated clone, the position was found to be relatively stable. Interestingly, the centromere drift was shown to occur frequently in CENP-U- and CENP-S-deficient cells. Based on these results, we suggest that the centromere position can change after many cell divisions, but this drift is suppressed in short-term cultures, and the complete centromere structure contributes to the suppression of the centromere drift.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223601 | PMC |
http://dx.doi.org/10.1083/jcb.201605001 | DOI Listing |
Ann Bot
December 2024
Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
Background: Genome size is influenced by natural selection and genetic drift acting on variations from polyploidy and repetitive DNA sequences. We hypothesized that centromere drive, where centromeres compete for inclusion in the functional gamete during meiosis, may also affect genome and chromosome size. This competition occurs in asymmetric meiosis, where only one of the four meiotic products becomes a gamete.
View Article and Find Full Text PDFJ Evol Biol
April 2024
Department of Biomedical Sciences, Vetmeduni, Vienna, Wien, Austria.
Population genetic inference of selection on the nucleotide sequence level often proceeds by comparison to a reference sequence evolving only under mutation and population demography. Among the few candidates for such a reference sequence is the 5' part of short introns (5SI) in Drosophila. In addition to mutation and population demography, however, there is evidence for a weak force favouring GC bases, likely due to GC-biased gene conversion (gBGC), and for the effect of linked selection.
View Article and Find Full Text PDFComp Cytogenet
January 2023
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Moscow Russia.
The karyotype differentiation of the twelve known members of the Wildekamp, 1994 species group is reviewed and the karyotype composition of seven of its species is described herein for the first time using a conventional cytogenetic protocol. Changes in the architecture of eukaryotic genomes often have a major impact on processes underlying reproductive isolation, adaptation and diversification. African annual killifishes of the genus Peters, 1868 (Teleostei: Nothobranchiidae), which are adapted to an extreme environment of ephemeral wetland pools in African savannahs, feature extensive karyotype evolution in small, isolated populations and thus are suitable models for studying the interplay between karyotype change and species evolution.
View Article and Find Full Text PDFPLoS One
January 2022
Department of Biology, University of Victoria, Victoria, British Columbia, Canada.
Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A two-year life history of pink salmon generates temporally isolated populations that spawn either in even-years or odd-years.
View Article and Find Full Text PDFPLoS Genet
August 2021
Duke University Medical Center, Durham, North Carolina, United States of America.
Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!