An Acrodermatitis Enteropathica-Associated Zn Transporter, ZIP4, Regulates Human Epidermal Homeostasis.

J Invest Dermatol

Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin, Republic of Korea. Electronic address:

Published: April 2017

Acrodermatitis enteropathica is an autosomal recessive disorder characterized by scaly eczematous dermatosis accompanied by alopecia and diarrhea. Various mutations in the SLC39A4 gene (ZIP4), which encodes a zinc transporter, are responsible for this disorder. However, the molecular mechanism underlying the involvement of ZIP4 in the pathogenesis of this condition has yet to be established. In this study, we report the role of ZIP4 in human epidermis. ZIP4 is predominantly expressed in human keratinocytes, and its expression is dramatically reduced on epidermal differentiation. ZIP4 knockdown in human keratinocytes down-regulates zinc (Zn) levels and the transcriptional activity of a key epidermal Zn-binding protein, ΔNp63, and dysregulates epidermal differentiation in a reconstituted human skin model, resulting in the appearance of proliferating keratinocytes even in the uppermost layers of the skin. We verified that, among the amino acid residues in its Zn-binding motif, Cys205 is critical for the processing and nuclear distribution of ΔNp63 and, therefore, Zn-dependent transcriptional activity. Our results suggest that ZIP4 is essential for maintaining human epidermal homeostasis through the regulation of Zn-dependent ΔNp63 activity and can provide insight into the molecular mechanisms responsible for the cutaneous symptoms observed in Acrodermatitis enteropathica patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2016.11.028DOI Listing

Publication Analysis

Top Keywords

human epidermal
8
epidermal homeostasis
8
human keratinocytes
8
epidermal differentiation
8
transcriptional activity
8
zip4
7
human
6
epidermal
5
acrodermatitis enteropathica-associated
4
enteropathica-associated transporter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!