Cationic nanohydrogel particles have become an attractive tool for systemic siRNA delivery, but improvement of their in vivo tolerance is desirable, especially to prevent potential long term side effects by tissue and cellular accumulation. Here, we designed novel ketal cross-linked cationic nanohydrogel particles that were assessed for reduced tissue accumulation and robust siRNA delivery in vitro and in vivo. An oligo-amine cross-linker equipped with a ketal moiety in its core was synthesized and applied to nanohydrogel cross-linking of self-assembled reactive ester block copolymers in DMSO. The resulting acid-sensitive cationic nanoparticles spontaneously disassembled over time in acidic milieu, as investigated by dynamic light scattering. Fluorescent correlation spectroscopy showed effective complexation with siRNA as well as its release upon particle degradation at endosomal pH. These properties resulted in an enhanced in vitro gene knockdown for the acid-degradable cationic nanoparticles compared to their non-degradable spermine analogues. In a murine liver fibrosis model enhanced carrier and payload accumulation in the fibrotic tissue facilitated sequence-specific gene knockdown and prevented fibrosis progression. Long-term monitoring of the carrier in the body showed an enhanced clearance for the acid-degradable carrier, even after multiple dosing. Therefore, these acid-degradable cationic nanohydrogel particles can be considered as promising siRNA carriers for in vivo purposes towards therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2016.12.006 | DOI Listing |
Int J Biol Macromol
December 2024
Advanced Light Source Lawrence Berkeley, National Laboratory Berkeley, CA 94720, USA. Electronic address:
Designing potential agents and constructing hydrophilic nano-hydrogel platforms for biomedical and pharmaceutical applications, especially for polyoxometalate-based metal-organic frameworks (PMOF), present both great desirability and significant challenges. A unique open porous Cu(I)-isopolymolybdate-based metal-organic framework (CCUT) has been self-assembled through ionothermal processes for in vivo synergistic anti-cancer therapy. The periodicity of Drugs@CCUT-1 (nano-crystals of CCUT after cation exchange and anti-cancer drugs upload) has been investigated by synchrotron wide-angle X-ray scattering, confirming the lattice structure unchanged.
View Article and Find Full Text PDFGels
June 2023
Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
The assembly of colloidal hyaluronic acid (HyA, as a polysaccharide) based hydrogel particles in an aqueous medium is characterized in the present paper, with an emphasis on the particular case of nanohydrogels formed by surfactant-neutralized polysaccharide networks. The structural changes and particle formation process of polysaccharide- and cationic-surfactant-containing systems were induced by the charge neutralization ability and the hydrophobic interactions of cetyltrimethylammonium bromide (CTAB) under different conditions. Based on the rheological, light scattering, ζ-potential, turbidity, and charge titration measurements, it can be concluded that the preparation of the HyA-CTAB particles can be greatly controlled.
View Article and Find Full Text PDFPharmaceutics
March 2023
Laboratory of Nanobiotechnology, Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel.
We have developed new formulations of nanohydrogels (NHGs) complexed with DNA devoid of cell toxicity, which, together with their tuned sizes, makes them of great interest for delivering DNA/RNA for foreign protein expression. Transfection results demonstrate that, unlike classical lipo/polyplexes, the new NHGs can be incubated indefinitely with cells without apparent cellular toxicity, resulting in the high expression of foreign proteins for long periods of time. Although protein expression starts with a delay as compared to classical systems, it is sustained for a long period of time, even after passing cells without observation of toxicity.
View Article and Find Full Text PDFPharmaceutics
January 2023
Laboratory of Nanobiotechnology, Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel.
The advent of protein expression using m-RNA applied lately for treating the COVID pandemic, and gene editing using CRISPR/Cas9 technology for introducing DNA sequences at a specific site in the genome, are milestones for the urgent need of developing new nucleic acid delivery systems with improved delivery properties especially for in vivo applications. We have designed, synthesized, and characterized novel cross-linked monodispersed nanohydrogels (NHG's) with well-defined sizes ranging between 50-400 nm. The synthesis exploits the formation of self-assemblies generated upon heating a thermo-responsive mixture of monomers.
View Article and Find Full Text PDFProg Biomater
June 2022
Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
Nanohydrogels (NHs) with the benefits of both nanomaterials and hydrogels unlock novel opportunities and applications in biomedicine. Nowadays, cationic NHs have attracted attention in the delivery of genetic materials into cells. Herein, by using reversible addition-fragmentation chain transfer method, an NH-based poly(hydroxyethyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) and cross-linked by poly(ethylene glycol)diacrylate with pH responsiveness character was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!