Metals and metastasis: Exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents.

Pharmacol Res

Molecular Pathology and Pharmacology Program, Department of Pathology, University of Sydney, NSW. Australia. Electronic address:

Published: January 2017

Metastasis is currently the leading cause of cancer related death and is the most feared and difficult to treat outcome for cancer patients. This complex process is regulated by a plethora of signaling pathways and molecules that control cell proliferation, invasion, motility and adhesion. Many of these vital processes that enable metastasis to occur are influenced by metals, which play crucial roles in the function of numerous proteins and enzymes. Importantly, an excess of essential metals such as iron and copper is often associated with carcinogenesis and metastatic disease. As such, metals have emerged as promising and viable therapeutic targets for a new generation of anti-cancer and anti-metastatic agents. Further, the unique properties of metals, including their abilities to redox cycle or to mimic other metals, can also be utilized to more effectively target aggressive and metastatic cancer cells. This review will provide an overview of the role that metals play in the metastatic progression of cancer and the development of novel therapies that either target or utilize metal ions as part of their mechanism of action to inhibit metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2016.12.001DOI Listing

Publication Analysis

Top Keywords

metals
8
role metals
8
anti-metastatic agents
8
metals play
8
cancer
5
metals metastasis
4
metastasis exploiting
4
exploiting role
4
metals cancer
4
metastasis
4

Similar Publications

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!