Meshing molecular surfaces based on analytical implicit representation.

J Mol Graph Model

Mathematics division, Center for Computational Engineering Science, RWTH Aachen University, Aachen, Germany; Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Germany. Electronic address:

Published: January 2017

We develop an algorithm for meshing molecular surfaces that is based on patch-wise meshing using an advancing-front method adapted to the particular case of molecular surfaces. We focus on the solvent accessible surface (SAS) and the solvent excluded surface (SES). The essential ingredient is a newly developed analysis of such surfaces in [18] that allows to describe all SES-singularities a priori and therefore a complete characterization of the SES. In addition, an algorithm for filling molecular inner holes is proposed based on the pre-computed data structures of molecular surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2016.11.008DOI Listing

Publication Analysis

Top Keywords

molecular surfaces
16
meshing molecular
8
surfaces based
8
surfaces
5
based analytical
4
analytical implicit
4
implicit representation
4
representation develop
4
develop algorithm
4
algorithm meshing
4

Similar Publications

The C3 protein is the central molecule within the complement system and undergoes proteolytic activation to C3b in the presence of pathogens. Pattern-independent activation of C3 also occurs via hydrolysis, resulting in C3(HO), but the structural details of C3 hydrolysis remain elusive. Here we show that the conformation of the C3(HO) analog, C3MA, is indistinguishable from C3b.

View Article and Find Full Text PDF

Floricoccus penangensis ML061-4 was originally isolated from the leaf surface of an Assam tea plant (Camellia sinensis var. assamica) from Northern Thailand. To assess the functions encoded by the F.

View Article and Find Full Text PDF

Nearly Barrierless Four-Hole Water Oxidation Catalysis on Semiconductor Photoanodes with High Density of Accumulated Surface Holes.

J Am Chem Soc

January 2025

Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

The sluggish water oxidation reaction (WOR) is considered the kinetic bottleneck of artificial photosynthesis due to the complicated four-electron and four-proton transfer process. Herein, we find that the WOR can be kinetically nearly barrierless on four representative photoanodes (i.e.

View Article and Find Full Text PDF

Corrigendum to "Cell surface GRP78-directed CAR-T cells are effective at treating human pancreatic cancer in preclinical models" [Translational Oncology volume 39 (2024) 101803].

Transl Oncol

February 2025

Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address:

View Article and Find Full Text PDF

Anti-Mold Activities of Cationic Oligomeric Surfactants.

Langmuir

January 2025

CAS Key Laboratory of Colloid, Interface, and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Molds are persistent and harmful but receive far less research attention compared with pathogenic bacteria. With the increase in microbial resistance to single-chain surfactant antimicrobial agents, it is crucial to investigate how surfactant structures affect the antimicrobial activity of surfactants. Here, we have studied the antimold efficacy of a series of oligomeric cationic quaternary ammonium surfactants at varying oligomerization levels with or without dynamic covalent imine bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!