A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction between Octenidine-based Solution and Sodium Hypochlorite: A Mass Spectroscopy, Proton Nuclear Magnetic Resonance, and Scanning Electron Microscopy-based Observational Study. | LitMetric

Introduction: Octenisept (OCT; Schülke & Mayr, Nordersdedt, Germany), an antimicrobial, antibiofilm agent and a promising root canal irrigant, can be potentially combined with sodium hypochlorite (NaOCl) during endodontic treatment. The aim of this study was first to identify the precipitate formed on the interaction between OCT and NaOCl and secondly to compare its effect on dentinal tubules with that of precipitate formed on combining chlorhexidine (CHX) and NaOCl.

Methods: This observational study was conducted in 3 stages. Initially, the color changes and precipitate formation were assessed when the test solution 0.1% OCT and 5.2% NaOCl were mixed. Color changes were compared with those observed when 2% CHX was mixed with 5.2% NaOCl. The residue obtained on combining OCT and NaOCl was subjected to proton nuclear magnetic resonance (H NMR) and mass spectrometric (MS) analysis. In the final stage, dentinal surfaces irrigated alternatively with OCT and NaOCl were compared using scanning electron microscopy (SEM) with the dentinal surface irrigated with CHX and NaOCl.

Results: The OCT-NaOCl mixture changed in color from initial milky white to transparent over time, whereas the CHX-NaOCl mixture showed an immediate peach-brown discoloration. H NMR and MS analysis established that the whitish precipitate obtained on combining OCT and NaOCl solutions correlated with the structure of phenoxyethanol (PE). SEM revealed dense precipitate occluding the dentinal tubules with the CHX and NaOCl group, whereas the precipitate was sparse and partially occluded in the OCT and NaOCl group.

Conclusions: The whitish precipitate formed with the OCT-NaOCl mixture was identified as PE, a compound already present in OCT, and it partly occluded the dentinal tubules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2016.09.015DOI Listing

Publication Analysis

Top Keywords

oct naocl
20
precipitate formed
12
dentinal tubules
12
naocl
9
sodium hypochlorite
8
proton nuclear
8
nuclear magnetic
8
magnetic resonance
8
scanning electron
8
observational study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!