Methylmercury (MeHg) exposure and adverse health effects in fishes have been documented, but the molecular mechanisms involved in toxicity have not been fully characterized. The objectives of the current study were to (1) determine whether total Hg (THg) in the muscle was predictive of MeHg concentrations in the brain of wild female yellow perch (Perca flavescens) collected from four lakes in Kejimkujik National Park, a known biological mercury (Hg) hotspot in Nova Scotia, Canada and (2) to determine whether transcripts involved in the oxidative stress response were altered in abundance in fish collected across five lakes representing a MeHg gradient. In female yellow perch, MeHg in whole brain (0.38 to 2.00μg/g wet weight) was positively associated with THg in muscle (0.18 to 2.13μg/g wet weight) (R=0.61, p<0.01), suggesting that muscle THg may be useful for predicting MeHg concentrations in the brain. Catalase (cat) mRNA levels were significantly lower in brains of perch collected from lakes with high Hg when compared to those individuals from lakes with relatively lower Hg (p=0.02). Other transcripts (cytochrome c oxidase, glutathione peroxidase, glutathione-s-transferase, heat shock protein 70, protein disulfide isomerase, and superoxide dismutase) did not show differential expression in the brain over the gradient. These findings suggest that MeHg may be inversely associated with catalase mRNA abundance in the central nervous system of wild fishes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2016.12.005 | DOI Listing |
Proc Biol Sci
January 2025
Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
Aquatic ecosystems are highly dynamic environments vulnerable to natural and anthropogenic disturbances. High-economic-value fisheries are one of many ecosystem services affected by these disturbances, and it is critical to accurately characterize the genetic diversity and effective population sizes of valuable fish stocks through time. We used genome-wide data to reconstruct the demographic histories of economically important yellow perch () populations.
View Article and Find Full Text PDFOne Health
December 2024
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, MN, USA.
Mar Pollut Bull
December 2024
United States Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA.
Owing to the heterogenous distribution of contaminated sediments in urban estuaries, contaminant residues, such as polychlorinated biphenyls (PCBs), in fish tissue can vary widely. To investigate the relationship between PCBs in fish tissue and heterogeneity of PCBs in sediment, we developed a geospatial Biota-Sediment Accumulation Factor (BSAF) model for an urban estuary. The model predicts whole fish total PCB residues at a scale of 0.
View Article and Find Full Text PDFJ Fish Biol
November 2024
Canadian Rivers Institute, Fredericton, New Brunswick, Canada.
Novel introductions of largemouth bass, Micropterus salmoides, often cause negative impacts on endemic populations of prey fishes and interspecific competitors. Although many studies have investigated trophic interactions between M. salmoides and smallmouth bass, Micropterus dolomieu, few have included chain pickerel, Esox niger, as a competitor despite similarities in their habitat use.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55108, United States of America. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!