Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater-unsaturated zone coupling, groundwater-surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that K, c, c, and c exert a significant effect on the modeled results, whereas K, K, and K have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2016.09.093 | DOI Listing |
Water Res
March 2025
State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, PR China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, PR China. Electronic address:
Quantitative analysis of runoff, total suspended solids, and total nitrogen dynamics, along with the identification of key factors within catchments, is essential for accurately addressing issues related to turbid and polluted water. Nevertheless, their implementation encounters significant challenges when applied to a mixed catchment containing mountain areas and lowland polder regions, due to the highly heterogeneous hydrological behaviors and consequently the lack of an appropriate approach. Faced with this problem, this study developed a framework by coupling the Soil and Water Assessment Tool (SWAT) and improved Polder Hydrology and Nitrogen modelling System (PHNS), and Random Forest analysis method to track the spatio-temporal changes in runoff, total suspended solids, and total nitrogen loading and identify their environmental determinants in a representative mountain-lowland mixed catchment, southeastern China.
View Article and Find Full Text PDFJ Environ Sci (China)
January 2025
Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address:
China's lowland rural rivers are facing severe eutrophication problems due to excessive phosphorus (P) from anthropogenic activities. However, quantifying P dynamics in a lowland rural river is challenging due to its complex interaction with surrounding areas. A P dynamic model (River-P) was specifically designed for lowland rural rivers to address this challenge.
View Article and Find Full Text PDFSci Total Environ
October 2024
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address:
J Environ Manage
August 2023
Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China. Electronic address:
Quantifying phosphorus (P) load from watersheds at a fine scale is crucial for studying P sources in lake or river ecosystems; however, it is particularly challenging for mountain-lowland mixed watersheds. To address this challenge, we proposed a framework to estimate the P load at the grid scale and assessed its risk to surrounding rivers in a typical mountain-lowland mixed watershed (Huxi Region in Lake Taihu Basin, China). The framework coupled three models: the Phosphorus Dynamic model for lowland Polder systems (PDP), the Soil and Water Assessment Tool (SWAT), and the Export Coefficient Model (ECM).
View Article and Find Full Text PDFSci Total Environ
March 2022
Xi'an Environmental Monitoring Station, No. 7 Jianye san Road, Changan District, Xi'an 710019, China.
Macrophyte-dominated ponds, widely distributed in lowland areas, play an important role in nitrogen (N) retention for nonpoint source pollution. However, their impacts on N sources and sinks are scarcely quantified at a watershed scale. This study aimed to investigate N dynamics (sources, sinks, transport, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!