Previously, granulated lactose carriers were shown to improve uniformity and aerosolization of a low-dose model drug. In the present study, the blending uniformity and aerosol dispersion performance were assessed for 2 model drugs salbutamol sulfate (SS) and rifampicin (RIF), blended at high loadings (10% or 30% drug) with granulated lactose carriers. The model drug powders differed in particle size distribution, morphology, density, and surface energies. Content uniformity of RIF blends was better than that of SS. Aerosolization studies showed that all blend formulations had acceptable emitted fractions (>70%). The SS blends showed low induction-port deposition (6%-10%) compared to RIF (5%-30%). This difference was greater at high flow rates. At 90 L/min, the low induction port deposition of SS blends allowed high fine particle fraction (FPF) of 73%-81%, whereas the FPF of the RIF blends was around 43%-45% with higher induction port deposition. However, SS blends exhibited strong flow rate-dependent performance. Increasing the flow rate from 30 L/min to 90 L/min increased SS FPF from approximately 20% to 80%. Conversely, RIF blends were flow rate and drug loading independent. It was concluded that the aerosolization of high drug-loaded dry powder inhaler formulations using granulated lactose, particularly flow rate dependency, varies with active pharmaceutical ingredient properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2016.09.035 | DOI Listing |
Mol Pharm
January 2025
Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, P. R. China.
Lactose is one of the most commonly used tablet diluents and fillers. However, the moisture sorption of lactose powder could exert detrimental effects on the excipient itself, as well as on the tablet quality. The effects of storage relative humidity (RH) conditions for different grades of lactose powders and tablets on compression behavior and tablet qualities were investigated.
View Article and Find Full Text PDFInt J Pharm
January 2025
Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium. Electronic address:
Pharmaceutics
November 2024
Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
: Improving the production rates of modern tablet presses places ever greater demands on the performance of excipients. Although co-processing has emerged as a promising solution, there is still a lack of directly compressible excipients for modified-release formulations. The aim of the present study was to address this issue by investigating the potential of novel co-processed excipients for the manufacture of modified-release tablets containing ibuprofen.
View Article and Find Full Text PDFFood Sci Biotechnol
December 2024
Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 10326 Korea.
Fluidized-bed agglomeration of native potato starch (NPS) with sugar binders [maltodextrin (MD) and lactose] produced larger particles with a more porous and diverse shape. Moreover, the agglomerated potato starch (APS) exhibited improved flowability and solubility. All powders displayed a B-type X-ray diffraction pattern.
View Article and Find Full Text PDFFront Microbiol
August 2024
Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
ShenZhu TiaoPi granule (STG) is a compound prescription that is used in Chinese medicine for the treatment of type 2 diabetes mellitus (T2DM). Previous studies have indicated a hypoglycaemic effect, but the underlying mechanism remains unclear. Goto-Kakizaki (GK) rats were used to establish an in vivo T2DM model (Mod).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!