Process-induced inadvertent phase change of an active pharmaceutical ingredient in a drug product could impact chemical stability, physical stability, shelf life, and bioperformance. In this study, dispersive Raman spectroscopy is presented as an alternative method for the nondestructive, high-throughput, at-line quantification of amorphous conversion. A quantitative Raman method was developed using a multivariate partial least squares (PLS) regression calibration technique with solid-state nuclear magnetic resonance (ssNMR) spectroscopy as the reference method. Compositionally identical calibration tablets containing 20% w/w total MK-A drug in varying weight proportions (0%-50% w/w based on total MK-A) of amorphous and crystalline MK-A were compressed at 10-45 kN force. PLS predictions of amorphous content of tablets using Raman spectroscopy correlated well with ssNMR quantification. The predictive accuracy of this model led to a strong correlation (R = 0.987) with a root mean-squared error of prediction of 1.5% w/w amorphous MK-A in tablets up to 50% w/w amorphous conversion in compressive stress range of 60-320 MPa. Overall, these results suggest that dispersive Raman spectroscopy offers fast, sensitive, and high-throughput (<5 min/tablet) method for quantitating amorphous conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2016.10.014DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
16
dispersive raman
12
amorphous conversion
8
total mk-a
8
w/w amorphous
8
amorphous
6
spectroscopy
5
spectroscopy quantifying
4
quantifying amorphous
4
amorphous drug
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!