Here we describe a new approach for tumor targeting in which augmented concentrations of Fe(II) in cancer cells and/or the tumor microenvironment triggers drug release from an Fe(II)-reactive prodrug conjugate. The 1,2,4-trioxolane scaffold developed to enable this approach can in principle be applied to a broad range of cancer therapeutics and is illustrated here with Fe(II)-targeted forms of a microtubule toxin and a duocarmycin-class DNA-alkylating agent. We show that the intrinsic reactivity/toxicity of the duocarmycin analog is masked in the conjugated form and this greatly reduced toxicity in mice. This in turn permitted elevated dosing levels, leading to higher systemic exposure and a significantly improved response in tumor xenograft models. Overall our results suggest that Fe(II)-dependent drug delivery via trioxolane conjugates could have significant utility in expanding the therapeutic index of a range of clinical and preclinical stage cancer chemotherapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5184369 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.6b01470 | DOI Listing |
Acta Biomater
December 2024
Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA. Electronic address:
Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction.
View Article and Find Full Text PDFmedRxiv
October 2023
MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
High body mass index (BMI) is a causal risk factor for endometrial cancer but the tumor molecular mechanisms affected by adiposity and their therapeutic relevance remain poorly understood. Here we characterize the tumor multi-omic landscape of endometrial cancers that have developed on a background of lifelong germline genetic exposure to elevated BMI. We built a polygenic score (PGS) for BMI in women using data on independent, genome-wide significant variants associated with adult BMI in 434,794 women.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
Tumor phototheranostics is usually compromised by the hypoxic tumor microenvironment and poor theranostic efficiency. The interplay between organic polymers and inorganic nanoparticles in novel nanocomposites has proven to be advantageous, overcoming previous limitations and harnessing their full potential through activation via the tumor microenvironment. This study successfully fabricated hypoxia-activated nanocolloids called HOISNDs through a process of self-assembly involving superparamagnetic iron oxide nanoparticles (SPIONs) and an organic polymer ligand called tetrakis(4-carboxyphenyl) porphyrin (TCPP)-engineered organic polymer ligand [methoxy poly(ethyleneglycol)--poly(dopamine-ethylenediamine-conjugated-4-nitrobenzyl chloroformate)-l-glutamate, mPEG--P(Dopa-EDA--NBCF)LG-TCPP)].
View Article and Find Full Text PDFJ Clin Invest
July 2023
School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.
Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP).
View Article and Find Full Text PDFEndocrinology
April 2023
Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease caused by smooth muscle cell-like tumors containing tuberous sclerosis (TSC) gene mutations and found almost exclusively in females. Patient studies suggest LAM progression is estrogen dependent, an observation supported by in vivo mouse models. However, in vitro data using TSC-null cell lines demonstrate modest estradiol (E2) responses, suggesting E2 effects in vivo may involve pathways independent of direct tumor stimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!