A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session01lvih0s72bigdo8lu3cm3gqm2ethpuh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Paper-Based Microfluidic Devices: Emerging Themes and Applications. | LitMetric

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b04581DOI Listing

Publication Analysis

Top Keywords

paper-based microfluidic
4
microfluidic devices
4
devices emerging
4
emerging themes
4
themes applications
4
paper-based
1
devices
1
emerging
1
themes
1
applications
1

Similar Publications

Point-of-care testing methods are essential for the large-scale diagnosis and monitoring of bacterial infections. This study introduces an integrated platform designed for the simultaneous detection of pathogenic bacteria. Users can simply inject samples into the system, which then conducts the entire procedure in a fully automated manner, eliminating the need for external power sources, all within 60 min or less.

View Article and Find Full Text PDF

Portable microfluidic devices for monitoring antibiotic resistance genes in wastewater.

Mikrochim Acta

December 2024

School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.

Antibiotic resistance genes (ARGs) pose serious threats to environmental and public health, and monitoring ARGs in wastewater is a growing need because wastewater is an important source. Microfluidic devices can integrate basic functional units involved in sample assays on a small chip, through the precise control and manipulation of micro/nanofluids in micro/nanoscale spaces, demonstrating the great potential of ARGs detection in wastewater. Here, we (1) summarize the state of the art in microfluidics for recognizing ARGs, (2) determine the strengths and weaknesses of portable microfluidic chips, and (3) assess the potential of portable microfluidic chips to detect ARGs in wastewater.

View Article and Find Full Text PDF

Fe/Pt-doped carbon nanoparticles with peroxidase-like activity for point-of-care determination of uric acid.

Mikrochim Acta

December 2024

Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.

A pasting-3D microfluidic paper-based analytical device (P-3D μPAD) was developed. It enabled an efficient cascade reaction between urate oxidase (UOX) and Fe/Pt-doped carbon nanoparticles (Fe/Pt-CNPs) for visual colorimetric detection of uric acid (UA). The novel Fe/Pt-CNP nanozyme performed high peroxidase-like activity toward 3,3',5,5'-tetramethylbenzidine (TMB) and HO with Michaelis - Menten constants (K) of 0.

View Article and Find Full Text PDF

Eco-sustainable point-of-care devices: Progress in paper and fabric based electrochemical and colorimetric biosensors.

Talanta

December 2024

Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India. Electronic address:

Monitoring real-time health conditions is a rinsing demand in a pandemic prone era. Wearable Point-of-Care (POC) devices with paper and fabric-based sensors are emerging as simple, low-cost, portable, and disposable analytical tools for development of green POC devices (GPOCDs). Capabilities of passive fluid transportation, compatibility with biochemical analytes, disposability and high degree of tunability using vivid device fabrication strategies enables development of highly sensitive and economically feasible POC sensors in particularly post COVID-19 pandemic outbreak.

View Article and Find Full Text PDF

Colorimetric detection of glucose in food using gold nanoparticles as nanoenzymes combined with a portable smartphone-assisted microfluidic paper-based analysis device.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Gain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; College of Food Engineering, Harbin University of Commerce, Harbin 150076, China. Electronic address:

Glucose is an important source of energy for the human body, but excessive intake will destroy the body's metabolic balance and increase health risks. In this paper, a smartphone glucose colorimetric detection system was developed in a paper-based microfluidic analytical device (µPAD) using green synthetic gold nanoparticles (AuNPs) as probes for accurate, rapid and efficient quantitative analysis of glucose in food. The AuNPs, acting as mimetic enzymes, were capable of catalyzing the breakdown of HO generated by the interaction of glucose oxidase (GOx) with glucose to OH, which subsequently oxidized the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), resulting in a typical green reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!