Lately, Ensemble Empirical Mode Decomposition (EEMD) techniques receive growing interest in biomedical data analysis. Event-Related Modes (ERMs) represent features extracted by an EEMD from electroencephalographic (EEG) recordings. We present a new approach for source localization of EEG data based on combining ERMs with inverse models. As the first step, 64 channel EEG recordings are pooled according to six brain areas and decomposed, by applying an EEMD, into their underlying ERMs. Then, based upon the problem at hand, the most closely related ERM, in terms of frequency and amplitude, is combined with inverse modeling techniques for source localization. More specifically, the standardized low resolution brain electromagnetic tomography (sLORETA) procedure is employed in this work. Accuracy and robustness of the results indicate that this approach deems highly promising in source localization techniques for EEG data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148586PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167957PLOS

Publication Analysis

Top Keywords

eeg data
12
source localization
12
eeg recordings
8
eeg
5
combined emd-sloreta
4
emd-sloreta analysis
4
analysis eeg
4
data
4
data collected
4
collected contour
4

Similar Publications

Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which beat-related information is contained in behavioral and neural responses.

View Article and Find Full Text PDF

Emotion recognition is an advanced technology for understanding human behavior and psychological states, with extensive applications for mental health monitoring, human-computer interaction, and affective computing. Based on electroencephalography (EEG), the biomedical signals naturally generated by the brain, this work proposes a resource-efficient multi-entropy fusion method for classifying emotional states. First, Discrete Wavelet Transform (DWT) is applied to extract five brain rhythms, i.

View Article and Find Full Text PDF

Background: Attention-Deficit/Hyperactivity Disorder (ADHD) represents a widely prevalent and heterogeneous neurodevelopmental condition in pediatric populations, often exhibiting a substantial propensity to persist into adulthood. ADHD is a multifaceted disorder that resists straightforward diagnostic tests. Clinicians must invest substantial time and effort to secure an accurate diagnosis and implement effective treatment.

View Article and Find Full Text PDF

Backgrounds: Virtual reality (VR) has become a transformative technology with applications in gaming, education, healthcare, and psychotherapy. The subjective experiences in VR vary based on the virtual environment's characteristics, and electroencephalography (EEG) is instrumental in assessing these differences. By analyzing EEG signals, researchers can explore the neural mechanisms underlying cognitive and emotional responses to VR stimuli.

View Article and Find Full Text PDF

Background: The Autism Spectrum Disorder (ASD) characteristic of difficulties in social communication and interaction has been previously associated with elevated anxiety and the degree of mental effort required to understand and respond to social cues. These associations have implications for the mental health of autistic youth, but they are usually based on correlational statistics between measures of anxiety and social interaction demands that are collected in formal psychological testing settings. Another index of mental effort that has been found to correlate with anxious arousal is gamma wave activity, which is measured via EEG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!