Background: The cereal weevil, Sitophilus zeamais is one of the most destructive pests of stored cereals worldwide. Frequent use of fumigants for managing stored-product insects has led to the development of resistance in insects. Essential oils from aromatic plants including the tea oil plant, Melaleuca alternifolia may provide environmentally friendly alternatives to currently used pest control agents. However, little is known about molecular events involved in stored-product insects in response to plant essential oil fumigation.

Results: M. alternifolia essential oil was shown to possess the fumigant toxicity against S. zeamais. The constituent, terpinen-4-ol was the most effective compound for fumigant toxicity. M. alternifolia essential oil significantly inhibited the activity of three enzymes in S. zeamais, including two detoxifying enzymes, glutathione S-transferase (GST), and carboxylesterase (CarE), as well as a nerve conduction enzyme, acetylcholinesterase (AChE). Comparative transcriptome analysis of S. zeamais through RNA-Seq identified a total of 3,562 differentially expressed genes (DEGs), of which 2,836 and 726 were up-regulated and down-regulated in response to M. alternifolia essential oil fumigation, respectively. Based on gene ontology (GO) analysis, the majority of DEGs were involved in insecticide detoxification and mitochondrial function. Furthermore, an abundance of DEGs mapped into the metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database were associated with respiration and metabolism of xenobiotics, including cytochrome P450s, CarEs, GSTs, and ATP-binding cassette transporters (ABC transporters). Some DEGs mapped into the proteasome and phagosome pathway were found to be significantly enriched. These results led us to propose a model of insecticide action that M. alternifolia essential oil likely directly affects the hydrogen carrier to block the electron flow and interfere energy synthesis in mitochondrial respiratory chain.

Conclusion: This is the first study to perform a comparative transcriptome analysis of S. zeamais in response to M. alternifolia essential oil fumigation. Our results provide new insights into the insecticidal mechanism of M. alternifolia essential oil fumigation against S. zeamais and eventually contribute to the management of this important agricultural pest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147960PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167748PLOS

Publication Analysis

Top Keywords

essential oil
32
alternifolia essential
28
oil fumigation
16
oil
10
essential
9
alternifolia
8
melaleuca alternifolia
8
sitophilus zeamais
8
stored-product insects
8
fumigant toxicity
8

Similar Publications

Controlled fragrance release at the right time, in the right place, depending on the context remains a technological challenge in the areas of psychophysiology, biochemistry and the entertainment industry. In this study, we demonstrate how bulk poly(dimethylsiloxane) (PDMS) templates may effectively take up and retain volatile organic compounds of essential orange oil in the original form without significantly shifting the scent profile. This is done depending on the sampling approach that follows a controllable and slow fragrance release maintaining a constant ratio of volatile compounds in a template-thickness, temperature and time-dependent manner.

View Article and Find Full Text PDF

With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.

View Article and Find Full Text PDF

As a Group 2B carcinogen, accurate and efficient detection for Fumonisin B1 (FB1) is essential. The emergence of aptamers presents a viable solution to meet this demand. In this study, a truncated aptamer named Apt40 was developed, showcasing remarkable binding affinity to FB1.

View Article and Find Full Text PDF

Corrigendum to "Fabrication and characterization of pullulan/tapioca starch-based antibacterial films incorporated with Litsea cubeba essential oil for meat preservation" [Int. J. Biol. Macromol. 268 (2024) 131775].

Int J Biol Macromol

January 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China. Electronic address:

View Article and Find Full Text PDF

Background: Knowledge about the diet quality among youth who follow different types of plant-based diets is essential to understand whether support is required to ensure a well-planned diet that meets their nutritional needs. This study aimed to investigate how food groups, macronutrient intake, and objective blood measures varied between Norwegian youth following different plant-based diets compared to omnivorous diet.

Methods: Cross-sectional design, with healthy 16-to-24-year-olds (n = 165) recruited from the Agder area in Norway, following a vegan, lacto-ovo-vegetarian, pescatarian, flexitarian or omnivore diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!