Sexual reproduction is a critical process in the life-cycle of plants and very sensitive to environmental perturbations. To better understand the effect of high temperature on plant reproduction, we cultivated tomato (Solanum lycopersicum) plants in continuous mild heat. Under this condition we observed a simultaneous reduction in pollen viability and appearance of anthers with pistil-like structures, while in a more thermotolerant genotype, both traits were improved. Ectopic expression of two pistil-specific genes, TRANSMITTING TISSUE SPECIFIC and TOMATO AGAMOUS LIKE11, in the anthers confirmed that the anthers had gained partial pistil identity. Concomitantly, expression of the B-class genes TOMATO APETALA3, TOMATO MADS BOX GENE6 (TM6) and LePISTILLATA was reduced in anthers under continuous mild heat. Plants in which TM6 was partially silenced reacted hypersensitively to temperature elevation with regard to the frequency of pistilloid anthers, pollen viability and pollen quantity. Taken together, these results suggest that high-temperature-induced down-regulation of tomato B-class genes contributes to anther deformations and reduced male fertility. Improving our understanding of how temperature perturbs the molecular mechanisms of anther and pollen development will be important in the view of maintaining agricultural output under current climate changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147909PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167614PLOS

Publication Analysis

Top Keywords

tomato solanum
8
solanum lycopersicum
8
anther pollen
8
pollen development
8
expression b-class
8
continuous mild
8
mild heat
8
pollen viability
8
b-class genes
8
tomato
6

Similar Publications

Genome-wide identification of long non-coding RNA for Botrytis cinerea during infection to tomato (Solanum lycopersicum) leaves.

BMC Genomics

January 2025

The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.

Long non-coding RNA (lncRNA) plays important roles in animals and plants. In filamentous fungi, however, their biological function in infection stage has been poorly studied. Here, we investigated the landscape and regulation of lncRNA in the filamentous plant pathogenic fungus Botrytis cinerea by strand-specific RNA-seq of multiple infection stages.

View Article and Find Full Text PDF

Endophytes can be a promising alternative for sustainable agronomic practices. In this study, we report for the first time a root-colonizing fungal strain (Sl27) of the genus Leptobacillium as a tomato (Solanum lycopersicum) endophyte, with no clear homology to any known species. Performed analyses and assays, including morphological and physiological characterization of the fungal isolate, provided insights into the ecological niche and potential agronomical and industrial applications of the fungal isolate.

View Article and Find Full Text PDF

Enhancing virus-mediated genome editing for cultivated tomato through low temperature.

Plant Cell Rep

January 2025

Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.

Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding.

View Article and Find Full Text PDF

Identification, characterization, and expression of Oryza sativa tryptophan decarboxylase genes associated with fluroxypyr-meptyl metabolism.

Plant Genome

March 2025

Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China.

Tryptophan decarboxylase (TDC) belongs to a family of aromatic amino acid decarboxylases and catalyzes the conversion of tryptophan to tryptamine. It is the enzyme involved in the first step of melatonin (MT) biosynthesis and mediates several key functions in abiotic stress tolerance. In Oryza sativa under pesticide-induced stress, TDC function is unclear.

View Article and Find Full Text PDF

A small RNA effector conserved in herbivore insects suppresses host plant defense by cross-kingdom gene silencing.

Mol Plant

January 2025

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of phloem-feeding whitefly (Bemisa tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!