Tailor-made ionic liquids based on imidazolium salts have recently attracted a large amount of attention because of their extraordinary properties and versatile functionality. An intriguing ability to interact with and stabilize membranes has already been reported for 1,3-dialkylimidazolium compounds. We now reveal further insights into the field by investigating 1,3-dimethyl-4,5-dialkylimidazolium (C-IMe·HI, n = 7, 11, 15) and 1,3-dibenzyl-4,5-dialkylimidazolium (C-IBn·HBr, n = 7, 11, 15) salts. Diverse alkyl chain lengths and headgroups differing in their steric demand were employed for the membrane interface interaction with bilayer membranes imitating the cellular plasma membrane. Membrane hydration properties and domain fluidization were analyzed by fluorescent bilayer probes in direct comparison to established model membranes in a buffered aqueous environment, which resembles the salt content and pH of the cytosol of living cells. Membrane binding and insertion was analyzed via a quartz crystal microbalance and confocal laser scanning microscopy. We show that short-chain 4,5-dialkylimidazolium salts with a bulky headgroup were able to disintegrate membranes. Long-chain imidazolium salts form bilayer membrane vesicles spontaneously and autonomously without the addition of other lipids. These 4,5-dialkylimidazolium salts are highly eligible for further biochemical engineering and drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b03182 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Molecular Recognition and Function, CHINA.
A pair of axially chiral thermally activated delayed fluorescent (TADF) enantiomers, R-TCBN-ImEtPF6 and S-TCBN-ImEtPF6, with intrinsic ionic characteristics were efficiently synthesized by introducing imidazolium hexafluorophosphate to chiral TADF unit. The TADF imidazolium salts exhibited a high photoluminescence quantum yield (PLQY) of up to 92%, a small singlet-triplet energy gap (∆EST) of 0.04 eV, as well as reversible redox properties.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Materials Department, University of California, Santa Barbara, California 93106, United States.
Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.
View Article and Find Full Text PDFChemistry
December 2024
Laboratory of Catalysis, MolSys Research Unit, Université de Liège, Institut de Chimie Organique (B6a), Allée du six Août 13, 4000, Liège, Belgium.
Thirteen imidazolium iodides bearing benzyl, mesityl, or 2,6-diisopropylphenyl substituents on their nitrogen atoms, and C-C alkyl chains on their C2 carbon atom were readily deuterated with DO as a cheap and non-toxic deuterium source in the presence of CsCO, a weak, innocuous, inorganic base. The isotopic exchange proceeded quickly and efficiently under mild, aerobic conditions to afford a range of aNHC and NHO precursors regioselectively labeled on their C2α exocyclic position and/or C4=C5 heterocyclic backbone. A "carbene-free" mechanism was postulated, in which the carbonate anion acts as a catalyst to activate an exocyclic, acidic C-H bond and ease a deuterium transfer from DO to the imidazolium salt in a concerted fashion.
View Article and Find Full Text PDFACS Energy Lett
December 2024
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom.
The fluoride-ion battery (FIB) is a post-lithium anionic battery that utilizes the fluoride-ion shuttle, achieving high theoretical energy densities of up to 1393 Wh L without relying on critical minerals. However, developing liquid electrolytes for FIBs has proven arduous due to the low solubility of fluoride salts and the chemical reactivity of the fluoride ion. By introducing a chemically stable electrolyte based on 1,3-dimethylimidazolium [MMIm] bis(trifluoromethanesulfonyl)imide [TFSI] and tetramethylammonium fluoride (TMAF), we achieve an electrochemical stability window (ESW) of 4.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia.
Efficient catalytic systems for various organic transformations in green solvents, especially water, are in great demand. Catalytically active bis-NHC complexes of palladium(II) based on imidazole-4,5-dicarboxylic acid with different lipophilicities were obtained. The synthesis of imidazolium salts was complicated by the formation of side products of nucleophilic substitution by iodide ions in the Menshutkin reaction involving alkyl iodides, which was successfully resolved by using alkyl tosylates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!