Multifunctional nanoparticles (NPs) have been widely used in biomedical applications because of their versatile properties. The properties of NPs should be well designed and controlled according to various applications because they may directly affect the functions and performances of NPs in biological systems. Cellular uptake is a prerequisite for the success of NP-based biomedical applications. However, the internalized NPs inside cells may have some adverse effects. Therefore, the interactions between NPs and cells should be thoroughly investigated and elucidated. This review summarizes the latest advances in NP-cell interactions. Especially the effects of NP properties including size, shape, shell structure, surface chemistry and protein corona formation on cellular uptake and cytotoxicity are highlighted in detail. Their effects on cell proliferation, differentiation and cellular mechanics are also discussed. These insights into NP-cell interactions should provide useful information for the preparation of highly functional NPs and their biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6bm00714g | DOI Listing |
Biomacromolecules
January 2025
Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
2,2,6,6-Tetramethylpiperidine--oxyl (TEMPO) structures possess potent antioxidant activities for biomedical applications. TEMPO immobilization on hydrophilic polymers is a powerful strategy to improve its properties; however, it is mostly limited to reversible-deactivation radical polymerizations or postpolymerization approaches. Here, we immobilized TEMPO units on a hydrophilic poly(2-ethyl-2-oxazoline) (PEtOx) backbone through cationic ring-opening polymerization (CROP) of a new 2-oxazoline monomer bearing a methoxy-protected TEMPO 2-substituent with 2-ethyl-2-oxazoline (EtOx).
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.
View Article and Find Full Text PDFJMIR Cancer
January 2025
Department of Medical Oncology, Antoni van Leeuwenhoek, Amsterdam, Netherlands.
Background: Patients with melanoma receiving immunotherapy with immune-checkpoint inhibitors often experience immune-related adverse events, cancer-related fatigue, and emotional distress, affecting health-related quality of life (HRQoL) and clinical outcome to immunotherapy. eHealth tools can aid patients with cancer in addressing issues, such as adverse events and psychosocial well-being, from various perspectives.
Objective: This study aimed to explore the effect of the Cancer Patients Better Life Experience (CAPABLE) system, accessed through a mobile app, on HRQoL compared with a matched historical control group receiving standard care.
Anal Chem
January 2025
Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China.
Understanding the molecular energy metabolism of single cells in the nucleolus stress response induced by mild-photothermal therapy (mPTT) is of great importance for investigating the photothermal lethal mechanism. Herein, we successfully fabricated a "turn-on"-type fluorescent nanoprobe based on the fluorescently labeled aptamers (FAM-ATP-apt and Cy3-GTP-apt) and TiCT MXene. When the adapters on the nanoprobes bonded to intracellular ATP and GTP, the fluorescence of the nanoprobes was restored.
View Article and Find Full Text PDFACS Appl Nano Mater
January 2025
Atomic Manipulation and Spectroscopy Group (AMS), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193 Barcelona, Spain.
Despite the outstanding progress in photonic sensor devices, a major limitation for its application as label-free biosensors for biomedical analysis lies in the surface biofunctionalization step, that is, the reliable immobilization of the biorecognition element onto the sensor surface. Here, we report the integration of bottom-up synthesized nanoporous graphene onto bimodal waveguide interferometric biosensors as an atomically precise biofunctionalization scaffold. This combination leverages the high sensitivity of bimodal waveguide interferometers and the large functional surface area of nanoporous graphene to create highly sensitive, selective, and robust biosensors for the direct immunoassay detection of C-reactive protein (CRP), an inflammatory biomarker widely used in the clinical diagnosis of infections and sepsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!