Methanotrophs play a key role in balancing the atmospheric methane concentration. Recently, the microbial methanotrophic diversity was extended by the discovery of thermoacidophilic methanotrophs belonging to the Verrucomicrobia phylum in geothermal areas. Here we show that a representative of this new group, Methylacidiphilum fumariolicum SolV, is able to grow as a real 'Knallgas' bacterium on hydrogen/carbon dioxide, without addition of methane. The full genome of strain SolV revealed the presence of two hydrogen uptake hydrogenases genes, encoding an oxygen-sensitive (hup-type) and an oxygen-insensitive enzyme (hhy-type). The hhy-type hydrogenase was constitutively expressed and active and supported growth on hydrogen alone up to a growth rate of 0.03 h, at O concentrations below 1.5%. The oxygen-sensitive hup-type hydrogenase was expressed when oxygen was reduced to below 0.2%. This resulted in an increase of the growth rate to a maximum of 0.047 h, that is 60% of the rate on methane. The results indicate that under natural conditions where both hydrogen and methane might be limiting strain SolV may operate primarily as a methanotrophic 'Knallgas' bacterium. These findings argue for a revision of the role of hydrogen in methanotrophic ecosystems, especially in soil and related to consumption of atmospheric methane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5364354PMC
http://dx.doi.org/10.1038/ismej.2016.171DOI Listing

Publication Analysis

Top Keywords

methylacidiphilum fumariolicum
8
fumariolicum solv
8
atmospheric methane
8
'knallgas' bacterium
8
strain solv
8
oxygen-sensitive hup-type
8
growth rate
8
methane
5
solv
4
solv thermoacidophilic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!