Stable core virome despite variable microbiome after fecal transfer.

Gut Microbes

a Institute of Medical Microbiology , University of Zurich, Zurich , Switzerland.

Published: May 2017

We recently described the 4.5-year time course of the enteric bacterial microbiota and virome of a patient cured from recurrent Clostridium difficile infection (rCDI) by fecal microbiota transplantation (FMT). Here, we extended the virome analyses and found the patient's phage population to exhibit highly donor-similar characteristics following FMT, which remained stable for the whole period tested (up to 7 months). Moreover, the detected viral populations of donor and patient exhibited comparable diversity and richness. These findings were unexpected since enteric viromes are normally highly variable, assumed to influence the bacterial host community and change with environmental conditions. In contrast to the virome, the bacterial microbiota varied indeed for more than 7 months with ongoing dysbiosis before it reached donor similarity. Our findings that are based on sequence information and protein domain analysis seem to suggest that stable phage properties correlate with successful FMT better than the changing bacterial communities. We speculate that we here preferentially detected a stable core virome, which dominated over a variable flexible virome that may have been too heterogeneous for experimental detection or was underrepresented in the databases. It will be interesting to analyze whether the enteric virome allows predictions for the clinical outcome of FMT for rCDI and other diseases such as inflammatory bowel disease or obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479397PMC
http://dx.doi.org/10.1080/19490976.2016.1265196DOI Listing

Publication Analysis

Top Keywords

stable core
8
core virome
8
bacterial microbiota
8
virome
7
stable
4
virome despite
4
despite variable
4
variable microbiome
4
microbiome fecal
4
fecal transfer
4

Similar Publications

Spirals are a special class of excitable waves that have its significance in the understanding of cardiac arrests and neuronal transduction. In a theoretical model of the chemical Belousov-Zhabotinsky reaction system, we explore the dynamics of the spatiotemporal patterns that emerge out of competing reaction and diffusion phenomena. By modifying the existing mathematical models of the reaction kinetics, we have been able to explore the explicit effect of hydrogen ion concentration in the system, so as to achieve various regimes of wave activity, from stable spirals to oscillation death.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.

View Article and Find Full Text PDF

Addressing the challenges of the efficiency and stability of red perovskite nanocrystals is imperative for the successful deployment of these materials in displays and lighting applications. the structural dynamic changes of red perovskite quantum dots (PQDs) are explored using a flow chemistry system to solve the above hurdles. First, the ultrabright red-emitting PQDs of CsPb(Br,I) are achieved by adjusting ligand distribution (oleic acid and oleyamine) in combination with different flow rates and equivalence ratios.

View Article and Find Full Text PDF

PSMA-targeted delivery of docetaxel in prostate cancer using small-sized PDA-based micellar nanovectors.

J Control Release

January 2025

Asymmetric Synthesis and Functional Nanosystems Group (Art&Fun), Institute of Chemical Research (IIQ), CSIC-University of Seville, C/ Américo Vespucio 49, 41092 Seville, Spain. Electronic address:

In this study, we present the first comparative analysis of active and passive drug delivery systems for docetaxel (DTX) in prostate cancer using supramolecular self-assembled micellar nanovectors. Specifically, we developed two novel micelles based on polydiacetylenic amphiphiles (PDA) for passive and active targeting. The active targeting micelles were designed with a prostate-specific membrane antigen (PSMA) ligand, ACUPA, to facilitate recognition by PSMA-positive cancer cells.

View Article and Find Full Text PDF

RNA nanoparticles, derived from the packaging RNA three-way junction motif (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor, have been demonstrated to be thermodynamically and chemically stable, with promise as a nanodelivery system. : A previous study showed that RNA nanoparticles with antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) inhibited cell proliferation via WST-1 assay. To further investigate the antiangiogenic potential of these RNA nanoparticles, a modified three-dimensional (3D) spheroid sprouting assay model of human umbilical vein endothelial cells was utilized in the present study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!