We investigated neutral species in the matrix-assisted laser desorption and ionization (MALDI) plume using femtosecond laser ionization spectrometry with simultaneous measurement of the standard MALDI spectrum of the identical MALDI event induced by pulsed UV laser irradiation. The ratio of neutral species in the plume [A]/[M] (A = phenylalanine (Phe) or alanine (Ala), M = 2,5-dihydroxybenzoic acid (DHB)) was confirmed to be the same as that of the sample mixture in the range of [A]/[M] = 4 × 10-1, indicating the validity of the widely adopted approximation [A]/[M] = [A]/[M] in the reaction quotient of the proton transfer reaction MH + A ⇄ M + AH. An effective parameter representing the extent of thermal equilibrium in the thermal proton transfer model is introduced for the first time. Numerical simulation based on this semiequilibrium model successfully reproduced variations of MALDI signal intensities AH and MH with two parameters: the fraction of ionized matrix a ≤ 10 and an effective temperature T = 1200 and 1100 K for Phe/DHB and Ala/DHB systems, respectively. These values show good agreement with those determined previously by different experimental approaches. The extent of thermal equilibrium was determined to be 95% and 98% for Phe/DHB and Ala/DHB systems, respectively, suggesting that the proton transfer reactions almost proceed to their thermal equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.6b09591DOI Listing

Publication Analysis

Top Keywords

proton transfer
16
neutral species
12
thermal equilibrium
12
maldi plume
8
plume femtosecond
8
femtosecond laser
8
laser ionization
8
based semiequilibrium
8
transfer model
8
extent thermal
8

Similar Publications

Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort.

View Article and Find Full Text PDF

MoS-confined Rh-Zn atomic pair boosts photo-driven methane carbonylation to acetic acid.

Nat Commun

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.

Direct carbonylation of CH to CHCOOH provides a promising pathway for upgrading of natural gas to transportable liquid chemicals, in which high-efficiency CH activation and controllable C-C coupling are both critical but challenging. Herein, we report that highly efficient photo-driven carbonylation of CH with CO and O to CHCOOH is achieved over MoS-confined Rh-Zn atomic-pair in conjunction with TiO. It delivers a high CHCOOH productivity of 152.

View Article and Find Full Text PDF

Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.

View Article and Find Full Text PDF

Interplay of acidic residues in the proton channel of E. coli cytochrome bd-I oxidase to promote oxygen reduction and NO release.

Biochim Biophys Acta Bioenerg

January 2025

Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS 4, Rue Blaise Pascal, 67081 Strasbourg, France; Institut universitaire de France (IUF), France. Electronic address:

The reduction of oxygen to water is crucial to life under aerobic conditions. Cytochrome bd oxidases perform this reaction with a very high oxygen affinity. Members of this protein family are solely found in prokaryotes and some archaea playing an important role in bacterial virulence and antibiotic resistance.

View Article and Find Full Text PDF

Strong emissions and aerosol formation potential of higher alkanes from diesel vehicles.

J Hazard Mater

December 2024

College of Environment and Climate, Institute for Environmental and Climate Research, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, 51143, China.

Higher alkanes are a major class of intermediate volatile organic compounds (IVOCs) emitted by vehicles, which have been considered as important precursors of secondary organic aerosol (SOA) in urban area. Dynamometer experiments were conducted to characterize emissions from gasoline and diesel vehicles in China. Three types of higher alkanes, namely acyclic, cyclic, and bicyclic alkanes, were explicitly quantified through the novel proton transfer reaction time-of-flight mass spectrometer with NO ionization (NO PTR-ToF-MS) with time response of 1 second.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!