A combination of mutasynthesis using a mutant strain of A. pretiosum blocked in the biosynthesis of amino-hydroxybenzoic acid (AHBA) and semisynthesis relying on a Stille cross-coupling step provided access to new ansamitocin derivatives of which one was attached by a thermolabile linker to nanostructured iron oxide particles. When exposed to an oscillating electromagnetic field the resulting iron oxide/ansamitocin conjugate 19 heats up in an aqueous suspension and the ansamitocin derivative 16 is released by means of a retro-Diels-Alder reaction. It exerts strong antiproliferative activity (IC =4.8 ng mg ) in mouse fibroblasts. These new types of conjugates have the potential for combating cancer through hyperthermia and chemotherapy using an electromagnetic external trigger.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201604903 | DOI Listing |
Chemistry
February 2017
Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
A combination of mutasynthesis using a mutant strain of A. pretiosum blocked in the biosynthesis of amino-hydroxybenzoic acid (AHBA) and semisynthesis relying on a Stille cross-coupling step provided access to new ansamitocin derivatives of which one was attached by a thermolabile linker to nanostructured iron oxide particles. When exposed to an oscillating electromagnetic field the resulting iron oxide/ansamitocin conjugate 19 heats up in an aqueous suspension and the ansamitocin derivative 16 is released by means of a retro-Diels-Alder reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!