Trade-offs between plant growth and defense are central to theoretical frameworks used to study the ecology and evolution of plant defense against herbivores. However, these frameworks, as well as the experiments designed to test them, rarely include belowground herbivores. We experimentally challenged seedlings of the tropical shrub Solanum lycocarpum (Solanaceae) with either aboveground foliar herbivores (Spodoptera caterpillars) or belowground root herbivores (the nematode Meloidogyne incognita) and measured the resulting changes in plant growth rates, biomass allocation, and the concentration of defensive terpenoids in roots and leaves. We found that plants that suffered aboveground herbivory responded with aboveground growth but belowground defense. Similarly, belowground herbivory resulted in root growth but elevated defenses of leaves. These results underscore the importance of belowground plant-herbivore interactions, and suggest that, in contrast to theoretical predictions, plants can simultaneously invest in both growth and defense. Finally, they emphasize the need for a "whole-plant" perspective in theoretical and empirical evaluations of plant-herbivore interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.1619 | DOI Listing |
Annu Rev Plant Biol
January 2025
2UMRT INRAE 1158 BioEcoAgro, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France; email:
Pectins underpin the assembly, molecular architecture, and physical properties of plant cell walls and through their effects on cell growth and adhesion influence many aspects of plant development. They are some of the most dynamic components of plant cell walls, and pectin remodeling and degradation by pectin-modifying enzymes can drive developmental programming via physical effects on the cell wall and the generation of oligosaccharides that can act as signaling ligands. Here, we introduce pectin structure and synthesis and discuss pectin functions in plants.
View Article and Find Full Text PDFBraz J Biol
January 2025
Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil.
Anthropic activities such as industries, agriculture and mining has generated public concern for its numerous irregular disposals of its waste, the incorrect deposition of heavy metals such as nickel (Ni) has caused the degradation and contamination of groundwater and water. Studies that point out cheap and efficient solutions have been an obstacle to the advancement of solutions for degraded area recovery programs. For this, a vegetable home experiment was developed, with an entirely randomized design with 5 treatments being a control (no metal) and 4 nickel concentrations (200 μM/L; 400 μM/L; 600 μM/L and 800 μM/L) with 6 repetitions.
View Article and Find Full Text PDFPLoS One
January 2025
College of Agriculture and Biological Science, Dali University, Dali, China.
Density dependence is a vital mechanism for explaining tree species diversity. Empirical studies worldwide have demonstrated that neighbor density influences plant survival and growth in various communities. However, it remains unclear how neighbor density affects plant survival and growth over extended periods.
View Article and Find Full Text PDFPLoS One
January 2025
Wuzhou University, College of Food and Pharmaceutical Engineering, Guangxi, P. R. China.
Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States.
Phosphorus recovery through enhanced biological phosphorus removal (EBPR) processes from agricultural wastes holds promise in mitigating the impending global P shortage. However, the complex nutrient forms and the microbial augments, expected to exert a profound impact on crop rhizomicrobiome and thus crop health, remained unexplored. In this study, we investigated the impacts of EBPR biosolids on crops growth and rhizomicrobiome in comparison to chemical fertilizer and Vermont manure compost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!