Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Grotthuss mechanism explains the anomalously high proton mobility in water as a sequence of proton transfers along a hydrogen-bonded (H-bonded) network. However, the vibrational spectroscopic signatures of this process are masked by the diffuse nature of the key bands in bulk water. Here we report how the much simpler vibrational spectra of cold, composition-selected heavy water clusters, D(DO), can be exploited to capture clear markers that encode the collective reaction coordinate along the proton-transfer event. By complexing the solvated hydronium "Eigen" cluster [DO(DO)] with increasingly strong H-bond acceptor molecules (D, N, CO, and DO), we are able to track the frequency of every O-D stretch vibration in the complex as the transferring hydron is incrementally pulled from the central hydronium to a neighboring water molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aaf8425 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!