Zwitterionic complexes have been the subject of great interest in the past several decades due to their multifunctional application in supramolecular chemistry. Herein, a series of internally stable charge-compensated carboranylated square-planar Pt(II) zwitterionic complexes have been explored by density functional theory aim to assessing their structures, the first hyperpolarizabilities, first hyperpolarizability densities, and electronic absorption spectra. It is found that the first hyperpolarizabilities of two-dimensional (2D) structure complexes are much larger with respect to the one-dimensional complex. It is ascribed to the lower transition energy and more obvious charge transfer, which can be further illustrated by their large amplitude and separate distribution of first hyperpolarizability density. In addition, the first hyperpolarizabilities of 2D complexes can be further significantly modified by introducing electron-donating/withdrawing groups on the carborane cage. As a consequence, we believe that these 2D zwitterionic complexes can behave as novel second-order nonlinear optical chromophore with a promising future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.6b09797 | DOI Listing |
J Org Chem
December 2024
Aix-Marseille Université, CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Marseille cedex 09 13288, France.
The one-pot transamination reactions on a zwitterionic benzoquinonemonoimine yield either a quinoxaline derivative or bis-zwitterionic macrocycles, depending on the number of carbon atoms bridging primary polyamines. These latter products, featuring two confined donor cavities, are the result of a [2 + 2] condensation without the need for template effect or high dilution conditions.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Astrophysics Branch, NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States.
Anharmonic computations reveal an intense, narrow (20 cm, 0.043 μm) absorption feature at approximately 2160 cm (4.63 μm) in the vibrational spectra of 14 prototypical singly isocyano-substituted polycyclic aromatic hydrocarbons (NC-PAHs) attributed to the NC stretching mode.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Division of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden. Electronic address:
Unlabelled: This study investigates the interaction of KEIF, the intrinsically disordered N-terminal region of the magnesium transporter MgtA, with lipid bilayers mimicking cell membranes. Combining experimental techniques such as neutron reflectometry (NR), quartz-crystal microbalance with dissipation monitoring (QCM-D), synchrotron radiation circular dichroism (SRCD), and oriented circular dichroism (OCD), with molecular dynamics (MD) simulations, we characterized KEIF's adsorption behavior.
Hypothesis: KEIF undergoes conformational changes upon interacting with lipid bilayers, potentially influencing MgtA's function within the plasma membrane.
J Mol Model
December 2024
PG & Research Department of Physics, Government Arts College for Men, Tamil Nadu, Krishnagiri, 635001, India.
Context: Schiff bases, which have intriguing properties in many areas, have been studied extensively in recent years due to their structural properties and biological activities. In this research, a novel water-soluble Schiff base complex, Catena-((μ-(E)-2-((4-methoxy-2-oxidobenzylidene) ammonio) ethane-1-sulfonato potassium, CHKNOS (CMOAESP), was synthesized by a one-step condensation reaction of 2-hydroxy-4-methoxy benzaldehyde and taurine with the yield of 65%, 0.333 g.
View Article and Find Full Text PDFChimia (Aarau)
December 2024
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zürich.
Ten years after the discovery of colloidal lead halide perovskite nanocrystals (LHP NCs), the field has witnessed substantial progress in synthetic methods, understanding of their surface chemistry and unique optical properties, precise control over NC size, shape, and composition. Ligand engineering, particularly with cationic and zwitterionic head groups, massively enhanced NC stability, compatibility with organic solvents, and photoluminescence efficiency. These breakthroughs allowed for the self-assembly of monodisperse NCs into complex long-range ordered superlattices and enabled the exploration of collective optical phenomena, such as superfluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!