Optical-filter-based chemical sensors have the potential to dramatically alter the field of hazardous materials sensing. Such devices could be constructed using inexpensive components, in a small and lightweight package, for sensing hazardous chemicals in defense, industrial, and environmental applications. Filter-based sensors can be designed to mimic human color vision. Recent developments in this field have used this approach to discriminate between strongly overlapping chemical signatures in the mid-infrared. Reported work relied on using numerically filtered FTIR spectra to model the infrared biomimetic detection methodology. While these findings are encouraging, further advancement of this technique requires the collection and evaluation of directly filtered data, using an optical system without extensive numerical spectral analysis. The present work describes the design and testing of an infrared optical breadboard system that uses the biomimetic mammalian color-detection approach to chemical sensing. The set of chemicals tested includes one target chemical, fuel oil, along with two strongly overlapping interferents, acetone and hexane. The collected experimental results are compared with numerically filtered FTIR spectral data. The results show good agreement between the numerically filtered data model and the data collected using the optical breadboard system. It is shown that the optical breadboard system is operating as expected based on modeling and can be used for sensing and discriminating between chemicals with strongly overlapping absorption bands in the mid-infrared.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.6b02674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!