Manganese oxide (MnO) has recently emerged as a promising alternate material for the fabrication of self-propelled micromotors. Platinum (Pt) has been traditionally used as a catalytic material for this purpose. However, the high cost associated with Pt restricts its widespread use toward practical applications where large amounts of material are required. MnO exists in different crystalline forms (polymorphs), which govern its catalytic behavior. In spite of this, the recent reports on MnO based micromotors have seldom reported on the polymorphic form involved. In the present work, we synthesized six different types of MnO based micromotors, which represent different geometrical designs (i.e., spherical, rod-like, and tube-like microparticles) and polymorphs, and characterized their motion behavior in different chemical environments. Out of all micromotors tested, the hollow spherical MnO microparticles reached the maximum velocity of ∼1600 μm s, which represents the fastest MnO based catalytic micromotor reported until date. The findings of this study will have a profound impact on the design and application of the next-generation synthetic micro- and nanomotors based on MnO as a low-cost and environment friendly material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b12024 | DOI Listing |
Biosens Bioelectron
December 2024
College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:
An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.
View Article and Find Full Text PDFAnal Bioanal Chem
December 2024
College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
The abnormal expression of acetylcholinesterase (AChE) is linked to the development of various diseases. Accurate determination of AChE activity as well as screening AChE inhibitors (AChEIs) holds paramount importance for early diagnosis and treatment of AChE-related diseases. Herein, a fluorescent and colorimetric dual-channel probe based on gold nanoclusters (AuNCs) and manganese dioxide nanosheets (MnO NSs) was developed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362400, China.
Influenza epidemics remain a global public health challenge. Vaccination with nucleic acid-based vaccines, which trigger strong cellular and humoral immune responses, represents a promising approach for preventing virus infection. However, its effectiveness relies on efficient delivery and an immunoadjuvant.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
The pristine phases SS1(ZnO), SS2(MnO), and SS3 (CuO) photocatalysts and mixed phases of ZnO-based nanocomposites were synthesized by the sol-gel method. Whereas SS4 (g-CN) was prepared through polymerization of urea. The synthesized photocatalysts were characterized using TGA-DTA, XRD, DRS, PL, DLS, FTIR, SEM, TEM, and HRTEM.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo N2L 3G1, Canada.
Tunnel-type-structure NaMnO has been extensively researched for cathode material in aqueous rechargeable sodium-ion battery owing to its high specific capacity (120 mA h g), large channels facilitating Na extraction/insertion, chemical and electrochemical stability in aqueous electrolytes, and low cost. However, the low average working potential (0.1 V versus standard hydrogen electrode, SHE) and no more than half of its available theoretical capacity within full batteries limit the practical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!