Rationale: In order to determine the degree of cross-linking on the surface and its variations in a nanometer-scale depth of organic materials, we developed an approach based on time-of-flight secondary ion mass spectrometry (TOF-SIMS), which provides rich chemical information in the form of fragment ions. TOF-SIMS is extremely surface-sensitive and capable of depth profiling with the use of a sputter ion beam to remove controllable amounts of substance.
Methods: Poly(methyl methacrylate) (PMMA) films spin-coated on a Si substrate were cross-linked using a recently developed, surface sensitive, hyperthermal hydrogen projectile bombardment technique. The ion intensity ratio between two ubiquitous hydrocarbon ions, C H and C H , detected in TOF-SIMS, denoted as ρ, was used to assess the degree of cross-linking of the PMMA films. The cross-linking depth of the PMMA films was revealed by depth profiling ρ into the polymer films using a C sputter beam.
Results: The control PMMA film spin-coated on a Si substrate was characterized by ρ = 32% on its surface when using a 25 keV Bi primary ion beam. This parameter on the PMMA films subjected to HHIC treatment for 10, 100 and 500 s increased to 45%, 56% and 65%, respectively. The depth profiles of ρ obtained using a 10 keV C ion beam resembled an exponential decay, from which the cross-linking depth was estimated to be 3, 15 and 39 nm, respectively, for the three cross-linked PMMA films.
Conclusions: We demonstrated that the ion intensity ratio of C H to C H detected in TOF-SIMS provides a unique and simple means to assess the degree of cross-linking of the surface of PMMA films cross-linked by the surface sensitive hyperthermal hydrogen projectile bombardment technique. With a C sputter beam, we were able to depth profile the PMMA films and determine cross-linking depths of the cross-linked polymer films at nanometer resolutions. Copyright © 2017 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.7801 | DOI Listing |
Dalton Trans
January 2025
College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.
A series of carbazolylpyridine ()-based 6/5/6 Pt(II) complexes featuring tetradentate ligands with nitrogen or oxygen atoms as bridging groups was designed and synthesized, and the bridging nitrogen atoms were derived from acridinyl (Ac), azaaceridine (AAc) and carbazole (Cz). Systematic experimental and theoretical studies reveal that the ligand structures have a significant effect on the electrochemical, photophysical and excited state properties of these complexes. Their oxidation processes mainly occur on the carbazole-Pt moieties, whereas the reduction processes typically occur on the electron-deficient pyridine (Py) moieties.
View Article and Find Full Text PDFNanotechnology
January 2025
Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo 05508-000 São Paulo SP Brazil
Sci Rep
January 2025
Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.
Chem Asian J
January 2025
Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Av. Rector Eduardo Morales 33, Valdivia, Chile.
This study investigates the critical role of polymer matrices in optimizing luminescence and energy transfer, utilizing the commercial dyes Coumarin 6 (C6) and Rhodamine B (RhB) as a donor-acceptor pair. Solution-phase experiments revealed a dependence of energy transfer efficiency on solvent dielectric constant. Furthermore, embedding the dyes within Poly(methyl methacrylate) (PMMA) or Poly(vinyl butyral) (PVB) matrices significantly enhance energy transfer due to increased molecular proximity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!