A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono6tfo6s6mgr692tvi9m6a1usp8e19od0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evidence of Staphylococcus Aureus Deformation, Proliferation, and Migration in Canaliculi of Live Cortical Bone in Murine Models of Osteomyelitis. | LitMetric

AI Article Synopsis

  • Staphylococcus aureus osteomyelitis is notoriously difficult to treat, and the key bacterial sources in live bone have been unclear, beyond biofilms on damaged tissue and implants.
  • This study utilized systematic transmission electron microscopy (TEM) to identify colonies of S. aureus in chronically infected mouse bones, revealing that these bacteria not only inhabit osteoblasts but also exist within the canaliculi of live cortical bone, forming chains that lead to biofilm development.
  • The findings indicate that S. aureus bacteria can migrate and proliferate through bone canaliculi, challenging previous assumptions about their non-motility and highlighting a new mechanism behind chronic bone infections that complicates treatment efforts.

Article Abstract

Although Staphylococcus aureus osteomyelitis is considered to be incurable, the major bacterial reservoir in live cortical bone has remained unknown. In addition to biofilm bacteria on necrotic tissue and implants, studies have implicated intracellular infection of osteoblasts and osteocytes as a mechanism of chronic osteomyelitis. Thus, we performed the first systematic transmission electron microscopy (TEM) studies to formally define major reservoirs of S. aureus in chronically infected mouse (Balb/c J) long bone tissue. Although rare, evidence of colonized osteoblasts was found. In contrast, we readily observed S. aureus within canaliculi of live cortical bone, which existed as chains of individual cocci and submicron rod-shaped bacteria leading to biofilm formation in osteocyte lacunae. As these observations do not conform to the expectations of S. aureus as non-motile cocci 1.0 to 1.5 μm in diameter, we also performed immunoelectron microscopy (IEM) following in vivo BrdU labeling to assess the role of bacterial proliferation in canalicular invasion. The results suggest that the deformed bacteria: (1) enter canaliculi via asymmetric binary fission; and (2) migrate toward osteocyte lacunae via proliferation at the leading edge. Additional in vitro studies confirmed S. aureus migration through a 0.5-μm porous membrane. Collectively, these findings define a novel mechanism of bone infection, and provide possible new insight as to why S. aureus implant-related infections of bone tissue are so challenging to treat. © 2016 American Society for Bone and Mineral Research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5413415PMC
http://dx.doi.org/10.1002/jbmr.3055DOI Listing

Publication Analysis

Top Keywords

live cortical
12
cortical bone
12
staphylococcus aureus
8
canaliculi live
8
bone tissue
8
osteocyte lacunae
8
aureus
7
bone
7
evidence staphylococcus
4
aureus deformation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!