Acquired aplastic anemia (AA) is a hematological disease characterized by failure of bone marrow hematopoiesis resulting in pancytopenia. While immune-mediated destruction of hematopoietic stem/progenitor cells (HSPCs) plays a central role in the pathophysiology of acquired AA, the transforming growth factor-β1 (TGF-β1) is crucial in adjusting the immune system. The aim of our study was to investigate the role of TGF-β1 gene polymorphisms rs1800469 and rs2317130 in susceptibility to acquired AA. Via the approach of SNaPshot, we genotyped rs1800469 and rs2317130 in 101 patients with acquired AA and 165 controls. It derived us to the conclusion that the genotype TT of rs1800469 (C/T) was significantly associated with decreased risk of acquired AA (adjusted OR = 0.39, 95% CI = 0.18-0.83, P = 0.014). Furthermore, this decreased risk was more pronounced among male patients (adjusted OR = 0.35, 95% CI = 0.13-0.95, P = 0.038) and SAA/vSAA (severe AA/very severe AA) patients (adjusted OR = 0.31, 95% CI = 0.12-0.77, P = 0.02) compared with controls in subgroup analysis. However, a significant increased risk was observed in the genotype distributions of rs2317130 for TT genotype (adjusted OR = 2.52, 95% CI = 1.03-6.19, P = 0.04) compared with the CC genotype among the SAA/vSAA patients and controls in the severity stratification analysis. Our results indicated that TGF-β1 gene polymorphisms might be involved in the munity of acquired AA in a Chinese population. This initial analysis provides valuable clues for further study of TGF-β1 pathway genes in acquired AA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288442PMC
http://dx.doi.org/10.1007/s00277-016-2886-5DOI Listing

Publication Analysis

Top Keywords

tgf-β1 gene
12
acquired
8
risk acquired
8
acquired aplastic
8
aplastic anemia
8
chinese population
8
gene polymorphisms
8
rs1800469 rs2317130
8
decreased risk
8
patients adjusted
8

Similar Publications

Polyamine oxidase (PAOs) are enzymes associated with polyamine catabolism and play important roles in growth and development and stress tolerance of plants. In the present study, genome-wide discovery and analysis of the PAO family in sorghum was done utilizing model PAO of Arabidopsis. Six PAO genes were found using publicly available genomic data.

View Article and Find Full Text PDF

Background Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects about a third of adults worldwide and is projected soon to be the leading cause of cirrhosis. It occurs when fat accumulates in hepatocytes and can progress to metabolic dysfunction-associated steatohepatitis (MASH), liver cirrhosis, and hepatocellular carcinoma. MASLD pathogenesis is believed to involve a combination of genetic and environmental risk factors.

View Article and Find Full Text PDF

The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.

View Article and Find Full Text PDF

Fatuamide A, a Hybrid PKS/NRPS Metallophore from a sp. Marine Cyanobacterium Collected in American Samoa.

J Nat Prod

January 2025

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.

A structurally novel metabolite, fatuamide A (), was discovered from a laboratory cultured strain of the marine cyanobacterium sp., collected from Faga'itua Bay, American Samoa. A bioassay-guided approach using NCI-H460 human lung cancer cells directed the isolation of fatuamide A, which was obtained from the most cytotoxic fraction.

View Article and Find Full Text PDF

Purpose: Identifying therapeutic targets for Signet Ring Cell Carcinoma (SRCC) of the colon and rectum is a clinical challenge due to the lack of Patient-Derived Organoids (PDO) or Xenografts (PDX). We present a robust method to establish PDO and PDX models to answer address this unmet need. We demonstrate that these models identify novel therapeutic strategies targeting therapy resistance and peritoneal metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!