Rational protein design has been proven to be a powerful tool for creating functional artificial proteins. Although many artificial metalloproteins with a single active site have been successfully created, those with dual active sites in a single protein scaffold are still relatively rare. In this study, we rationally designed dual active sites in a single heme protein scaffold, myoglobin (Mb), by retaining the native heme site and creating a copper-binding site remotely through a single mutation of Arg118 to His or Met. Isothermal titration calorimetry (ITC) and electron paramagnetic resonance (EPR) studies confirmed that a copper-binding site of [3-His] or [2-His-1-Met] motif was successfully created in the single mutant of R118H Mb and R118M Mb, respectively. UV/Vis kinetic spectroscopy and EPR studies further revealed that both the heme site and the designed copper site exhibited nitrite reductase activity. This study presents a new example for rational protein design with multiple active sites in a single protein scaffold, which also lays the groundwork for further investigation of the structure and function relationship of heme/non-heme proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125789 | PMC |
http://dx.doi.org/10.1002/open.201500224 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!