Mitigating pharmaceutical waste exposures: policy and program considerations.

Isr J Health Policy Res

Department of Environmental and Occupational Health, School of Public Health, University of Haifa, Abu Hushi 199, Mount Carmel, Haifa, Israel.

Published: January 2018

Pharmaceutical disposal and the environmental fate of medication metabolites directly impacts the public's health in two significant ways: accidental medication ingestion of pharmaceuticals that were not disposed of properly results in inadvertent toxicity; and environmental health consequences of pharmaceuticals that were inappropriately disposed and which contaminate municipal water supply. In reviewing the effectiveness of medication disposal policy globally, it is crucial to not only determine which policies are effective but also to assess why they are effective. By assessing the root causes for a specific policy's effectiveness it can be determined if those successes could be translated to another country with a different health care system, unique culture and divergent policy ecosystem. Any intervention regarding pharmaceutical disposal would require a multifaceted approach beyond raising awareness and coordinating pharmaceutical disposal on a national level. While consumer participation is important, effective primary prevention would also include research on drug development that is designed to biodegrade in the environment as opposed to medications that persist and accumulate in the natural environment even when properly disposed. Countries that lack a nationalized disposal policy should leverage the resources and infrastructure already in place in the national health care system to implement a unified policy to address medication disposal in the short-term. In tandem, efforts should be made to recruit the biotechnology sector in high-tech and academia to develop new technologies in medication design and water filtration to decrease exposures in the long-term.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123414PMC
http://dx.doi.org/10.1186/s13584-016-0118-zDOI Listing

Publication Analysis

Top Keywords

pharmaceutical disposal
12
medication disposal
8
disposal policy
8
health care
8
care system
8
disposal
6
policy
5
medication
5
mitigating pharmaceutical
4
pharmaceutical waste
4

Similar Publications

An Advanced Combinatorial System from Leaves and Propolis Enhances Antioxidants' Skin Delivery and Fibroblasts Functionality.

Pharmaceuticals (Basel)

November 2024

Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece.

: Vine leaves are a bulky by-product that are disposed of and treated as waste in the wine production process. In the present study polyphenols from vine leaves were extracted and simultaneously encapsulated in a new delivery system consisting of liposomes and cyclodextrins. This system was further combined with propolis polyphenols encapsulated in cyclodextrins, resulting in a colloidal suspension for the release of antioxidants in a time-controlled way, the rate of which depends on the ratio of the materials.

View Article and Find Full Text PDF

Comparative analysis of hospital laboratory wastewater treatment techniques in Syrian Arab Republic.

East Mediterr Health J

December 2024

Department of Basic Sciences, Faculty of Civil Engineering, University of Aleppo, Aleppo, Syria.

Background: Hospital wastewater poses a significant threat to human health due to the presence of difficult-to-degrade organic compounds, active pharmaceutical ingredients and multiple inorganic substances that can pollute water resources and ecosystems.

Aim: To compare the effectiveness of different techniques for removing organic load from hospital laboratory wastewater in Aleppo, Syria.

Methods: We treated wastewater samples from hospital laboratories at Aleppo University Hospital, Syria, using several techniques, including biological treatment with the rotating biological contactor, adsorption with Syrian natural clay, coagulation with aluminium sulphate, advanced oxidation with ultrasound, and a combined treatment using natural clay and ultrasound.

View Article and Find Full Text PDF

Aims: Previous studies have shown that eGDR and TyG, as indicators of insulin resistance (IR), were key risk factors for cardiovascular disease (CVD). Our study further explored the relationship between eGDR change and new-onset CVD, and compared the predictive value of eGDR change, eGDR and TyG.

Materials And Methods: A total of 2895 participants without CVD at baseline from the China Health and Retirement Longitudinal Study (CHARLS) were included, using K-means clustering and cumulative eGDR to measure eGDR change between 2012 and 2015.

View Article and Find Full Text PDF

Insulin resistance is a condition characterized by the attenuated biological response in the presence of normal or elevated insulin level and therefore is characterized by the impaired sensitivity to insulin and impaired glucose disposal and utilization. Insulin resistance in brain/Brain insulin resistance (BIR) is accompanied by the various manifestations including alteration in glucose sensing by hypothalamic neurons, impaired sympathetic outflow in response to hypoglycemia, increased ROS production, impaired mitochondrial oxygen consumption in the brain, cognitive deficits and neuronal cell damage. It has been reported that the disrupted insulin signaling is accompanied by the reduced expression of insulin receptor (IR)/insulin receptor substrate 1 (IRS1)/PI3K/AKT and IGF-1 receptor (IGF-1R)/IRS2/PI3K pathways.

View Article and Find Full Text PDF

Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion.

Adv Biochem Eng Biotechnol

December 2024

Plant Ecology and Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, Nigeria.

The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!