https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=27933119&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 2793311920200929
1468-69961712016Science and technology of advanced materialsSci Technol Adv MaterLongitudinal conductivity of LaF3/SrF2 multilayer heterostructures.799806799-806LaF3/SrF2 multilayer heterostructures with thicknesses of individual layers in the range 5-100 nm have been grown on MgO(100) substrates using molecular beam epitaxy. The longitudinal conductivity of the films has been measured using impedance spectroscopy in the frequency range 10-1-106 Hz and a temperature range 300-570 K. The ionic DC conductivities have been determined from Nyquist impedance diagrams and activation energies from the Arrhenius-Frenkel equation. An increase of the DC conductivity has been observed to accompany decreased layer thickness for various thicknesses as small as 25 nm. The greatest conductivity has been shown for a multilayer heterostructure having thicknesses of 25 nm per layer. The structure has a conductivity two orders of magnitude greater than pure LaF3 bulk material. The increasing conductivity can be understood as a redistribution of charge carriers through the interface due to differing chemical potentials of the materials, by strong lattice-constant mismatch, and/or by formation of a solid La1-xSrxF3-x solution at the interface during the growth process.VergentevTikhonTInstitute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University , Saint-Petersburg , Russia.BanshchikovAlexanderADivisions of Solid State Physics and Physics of Dielectric and Semiconductors, Ioffe Institute , Saint-Petersburg , Russia.FilimonovAlexeyAInstitute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University , Saint-Petersburg , Russia.KorolevaEkaterinaEInstitute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Saint-Petersburg, Russia; Divisions of Solid State Physics and Physics of Dielectric and Semiconductors, Ioffe Institute, Saint-Petersburg, Russia.SokolovNikolayNDivisions of Solid State Physics and Physics of Dielectric and Semiconductors, Ioffe Institute , Saint-Petersburg , Russia.WurzMarc ChristopherMCInstitute for Microproduction Technology, Leibniz University of Hanover , Garbsen , Germany.engJournal Article20161125
United StatesSci Technol Adv Mater1016144201468-6996103 Composites105 Low-Dimension (1D/2D) materials212 Surface and interfaces306 Thin film /Coatings40 Optical, magnetic and electronic device materialsImpedance spectroscopyheterostructuresinterfacial spacingionic conductivitylanthanum fluoridelongitudinal conductivitymolecular beam epitaxystrontium fluoride
20161282016104201610720161210602016121060201612106120161125epublish27933119PMC512726810.1080/14686996.2016.12469401246940Sorokin NI, Sobolev BP. Nonstoichiometric fluorides - Solid electrolytes for electrochemical devices: a review. Crystallogr Rep. 2007;52:842–863. doi: 10.1134/S1063774507050148.10.1134/S1063774507050148Andreeva AV, Despotuli AL. Interface design in nanosystems of advanced superionic conductors. Ionics. 2005;11:152–160. doi: 10.1007/BF02430415.10.1007/BF02430415Fergus JW. The application of solid fluoride electrolytes in chemical sensors. Sensor Actuat B Chem. 1997;42:119–130. doi: 10.1016/S0925-4005(97)00193-7.10.1016/S0925-4005(97)00193-7Tan G-L, Wu X-J, Wang L-R, et al. Investigation for oxygen sensor of LaF3 thin-film. Sensor Actuat B Chem. 1996;34:417–421.Anji Reddy M, Fichtner M. Batteries based on fluoride shuttle. J Mater Chem. 2011;21:17059–17062. doi: 10.1039/c1jm13535j.10.1039/c1jm13535jNa X, Niu W, Li H, et al. A novel dissolved oxygen sensor based on MISFET structure with Pt–LaF3 mixture film. Sensor Actuat B Chem. 2002;87:222–225. doi: 10.1016/S0925-4005(02)00238-1.10.1016/S0925-4005(02)00238-1Sata N, Eberman K, Eberl K, et al. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature. 2000;408:946–949. doi: 10.1038/35050047.10.1038/3505004711140675Morgan BJ, Madden PA. Molecular dynamics simulation of coherent interfaces in fluorite heterostructures. Phys Rev B. 2014;89:054304-1–054304-9.Sata N, Jin-Phillipp NY, Eberl K, et al. Enhanced ionic conductivity and mesoscopic size effects in heterostructures of BaF2 and CaF2. Solid State Ionics. 2002;154-155:497–502. doi: 10.1016/S0167-2738(02)00488-5.10.1016/S0167-2738(02)00488-5Guo X, Matei I, Jamnik J, et al. Defect chemical modeling of mesoscopic ion conduction in nanosized CaF2∕BaF2 multilayer heterostructures. Phys Rev B. 2007;76:125429-1–125429-7.Guo X, Maier J. Comprehensive modeling of ion conduction of nanosized CaF2/BaF2 multilayer heterostructures. Adv Funct Mater. 2009;19:96–101. doi: 10.1002/adfm.v19:1.10.1002/adfm.v19:1Zahn D, Heitjans P, Maier J. From composites to solid solutions: modeling of ionic conductivity in the CaF2–BaF2 system. Chem Eur J. 2012;18:6225–6229. doi: 10.1002/chem.201102410.10.1002/chem.20110241022488848Vergentev TY, Banshchikov AG, Koroleva EY, et al. In-plane conductivity oft hin films and heterostructures based on LaF3-SrF2. St. Petersburg State Polytechnical University J Phys Math. 2013;4-2:76–83.Vergent’ev TY, Koroleva EY, Kurdyukov DA, et al. Behavior of the low-frequency conductivity of silver iodide nanocomposites in the superionic phase transition region. Phys Solid State. 2013;55:175–180. doi: 10.1134/S1063783413010320.10.1134/S1063783413010320Vergentyev TY, Koroleva EY, Banshchikov AG, et al. Longitudinal conductivity of thin films of La1–xSrxF3–x solid solutions on glass ceramics. Russ J Electrochem. 2013;49:783–787. doi: 10.1134/S102319351308020X.10.1134/S102319351308020XRodriguez-Carvajal J. Recent advances in magnetic structure determination neutron powder diffraction. Physica B. 1993;192:55–69.Maximov B, Schulz H. Space group, crystal structure and twinning of lanthanum trifluoride. Acta Cryst B. 1985;41:88–91. doi: 10.1107/S0108768185001677.10.1107/S0108768185001677Sorokin NI, Fominykh MV, Krivandina EA, et al. Ion transport in R1-xSrxF3-x (R=La-Yb, Y) solid solutions with a LaF3 (tysonite) structure. Crystallogr Rep. 1996;41:292–301.Wang L, Zhao J, He X, et al. Electrochemical Impedance Spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries. Int J Electrochem Sci. 2012;7:345–353.Kosacki I, Rouleau CM, Becher PF, et al. Surface/interface-related conductivity in nanometer thick YSZ Films. Electrochem Solid-State Lett. 2004;7:A459–A461. doi: 10.1149/1.1809556.10.1149/1.1809556Ishihara T. Oxide ion conductivity in defect perovskite, Pr2NiO4 and its application for solid oxide fuel cells. J Ceram Soc Jpn. 2014;122:179–186. doi: 10.2109/jcersj2.122.179.10.2109/jcersj2.122.179Hyodo J, Ida S, Ishihara T. Oxide ionic conductivity in Pr-2(Ni,Cu,Ga)O4+delta-(Ce,Sm)O2-delta laminated film estimated with the Hebb-Wagner method. Solid State Ionics. 2014;262:889–892. doi: 10.1016/j.ssi.2013.12.040.10.1016/j.ssi.2013.12.040Wei Y-Z, Sridhar S. A new graphical representation for dielectric data. J Chem Phys. 1993;99:3119–3124. doi: 10.1063/1.465165.10.1063/1.465165Maier J. Ionic conduction in space charge region. Prog Solid St. Chem. 1995;23:171–263. doi: 10.1016/0079-6786(95)00004-E.10.1016/0079-6786(95)00004-EKosacki I, Rouleau CM, Becher PF, et al. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ion. 2005;176:1319. doi: 10.1016/j.ssi.2005.02.021.10.1016/j.ssi.2005.02.021Kuwata N, Sata N, Tsurui T, et al. Proton transport and microstructure properties in superlattice thin films fabricated by pulsed laser deposition. Jpn J Appl Phys. 2005;44:8613–8618. doi: 10.1143/JJAP.44.8613.10.1143/JJAP.44.8613Kuwata N, Sata N, Saito S, et al. Structural and electrical properties of SrZr0.95Y0.05O3/SrTiO3 superlattices. Solid State Ionics. 2006;177:2347–2351. doi: 10.1016/j.ssi.2006.05.043.10.1016/j.ssi.2006.05.043Sorokin NI, Sobolev BP. Frequency response of the low-temperature ionic conductivity of single crystals R1-yMyF3-y (R = La-Er; M = Ca, Sr, Ba, Cd) Phys Solid State. 2008;50:416–421. doi: 10.1134/S1063783408030037.10.1134/S1063783408030037Sobolev BP, Sorokin NI. Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M1−xRxF2+x and R1−yMyF3−y crystals (M = Ca, Sr, Ba; R are rare earth elements) Crystallogr Rep. 2014;59:807–830. doi: 10.1134/S1063774514060273.10.1134/S1063774514060273Vergentev TY, Koroleva EY, Rissing L, et al. Analysis of in-plane conductivity of La1-xSrxF3-x superionic thin films. Internet of Things, Smart Spaces, Next Generation Networks Syst. 2015;9247:778–785. doi: 10.1007/978-3-319-23126-6.10.1007/978-3-319-23126-6Maier J. Defect chemistry and conductivity effects in heterogeneous solid electrolytes. J Electrochem Soc: Solid state Sci Technol. 1987;134:1524. doi: 10.1149/1.2100703.10.1149/1.2100703Maier J. Defect chemistry and ionic conductivity in thin films. Solid State Ionics. 1987;23:59–67. doi: 10.1016/0167-2738(87)90082-8.10.1016/0167-2738(87)90082-8Fabbri E, Pergolesi D, Traversa E. Ionic conductivity in oxide heterostructures: the role of interfaces. Sci Technol Adv Mater. 2010;11:054503-1–054503-9.PMC509061927877360