Distinct Neural Substrates for Maintaining Locations and Spatial Relations in Working Memory.

Front Hum Neurosci

Department of Psychological and Brain Sciences, Johns Hopkins University, BaltimoreMD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, BaltimoreMD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, BaltimoreMD, USA.

Published: November 2016

Previous work has demonstrated a distinction between maintenance of two types of spatial information in working memory (WM): spatial locations and spatial relations. While a body of work has investigated the neural mechanisms of sensory-based information like spatial locations, little is known about how spatial relations are maintained in WM. In two experiments, we used fMRI to investigate the involvement of early visual cortex in the maintenance of spatial relations in WM. In both experiments, we found less quadrant-specific BOLD activity in visual cortex when a single spatial relation, compared to a single spatial location, was held in WM. Also across both experiments, we found a consistent set of brain regions that were differentially activated during maintenance of locations vs. relations. Maintaining a location, compared to a relation, was associated with greater activity in typical spatial WM regions like posterior parietal cortex and prefrontal regions. Whereas maintaining a relation, compared to a location, was associated with greater activity in the parahippocampal gyrus and precuneus/retrosplenial cortex. Further, in Experiment 2 we manipulated WM load and included trials where participants had to maintain three spatial locations or relations. Under this high load condition, the regions sensitive to locations vs. relations were somewhat different than under low load. We also identified regions that were sensitive to load specifically for location or relation maintenance, as well as overlapping regions sensitive to load more generally. These results suggest that the neural substrates underlying WM maintenance of spatial locations and relations are distinct from one another and that the neural representations of these distinct types of spatial information change with load.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121279PMC
http://dx.doi.org/10.3389/fnhum.2016.00594DOI Listing

Publication Analysis

Top Keywords

spatial relations
16
spatial locations
16
locations relations
16
spatial
13
locations spatial
12
regions sensitive
12
distinct neural
8
neural substrates
8
relations
8
working memory
8

Similar Publications

Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.

Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).

View Article and Find Full Text PDF

Alzheimer's disease is a complex neurodegenerative disease characterized by progressive decline in cognitive function and behaviour. Ginger is the rhizome of the plant Zingiber officinale Roscoe, has been an important ingredient of many Ayurveda formulations to treat neurological disorders. The present study aims to estimate the variation of 6-gingerol content in nine different ginger samples collected from Manipur, India, investigate the neuroprotective potential of the most potent ginger sample against scopolamine-induced cognitively impaired mice, and validate the therapeutic claim by molecular docking analysis.

View Article and Find Full Text PDF

Repeatability of radiomic features in myocardial T1 and T2 mapping.

Eur Radiol

January 2025

Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany.

Purpose: To investigate the test-retest repeatability of radiomic features in myocardial native T1 and T2 mapping.

Methods: In this prospective study, 50 healthy volunteers (29 women and 21 men, mean age 39.4 ± 13.

View Article and Find Full Text PDF

Parkinson's disease is a complex neurodegenerative disorder characterized by degeneration of dopaminergic neurons, with patients manifesting varying motor and nonmotor symptoms. Previous studies using single-cell RNA sequencing in rodent models and humans have identified distinct heterogeneity of neurons and glial cells with differential vulnerability. Recent studies have increasingly leveraged multiomics approaches, including spatial transcriptomics, epigenomics, and proteomics, in the study of Parkinson's disease, providing new insights into pathogenic mechanisms.

View Article and Find Full Text PDF

Antiferromagnets with broken time-reversal ( ) symmetry ( -odd antiferromagnets) have gained extensive attention, mainly due to their ferromagnet-like behavior despite the absence of net magnetization. However, certain types of -odd antiferromagnets remain inaccessible by the typical ferromagnet-like phenomena (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!