Aim: The aim of this study was to assess the anatomical accuracy of navigation technology in localizing defined anatomic landmarks within the orbit with respect to type of technology (optical versus electromagnetic systems) and position of the dynamic reference marker on the skull (vertex, temporal, parietal, and mastoid) using in vitro navigation-enabled human skulls. The role of this model as a possible learning tool for anatomicoradiological correlations was also assessed.
Methods: Computed tomography (CT) scans were performed on three cadaveric human skulls using the standard image-guidance acquisition protocols. Thirty-five anatomical landmarks were identified for stereotactic navigation using the image-guided StealthStation S7™ in both electromagnetic and optical modes. Three outcome measures studied were accuracy of anatomical localization and its repeatability, comparisons between the electromagnetic and optical modes in assessing radiological accuracy, and the efficacy of dynamic reference frame (DRF) at different locations on the skull.
Results: The geometric localization of all the identified anatomical landmarks could be achieved accurately. The Cohen's kappa agreements between the surgeons were found to be perfect (kappa =0.941) at all predetermined points. There was no difference in anatomical localization between the optical and electromagnetic modes (≤0.001). Precision for radiological identification did not differ with various positions of the DRF. Skulls with intact anatomical details and careful CT image acquisitions were found to be stereotactically useful.
Conclusion: Accuracy of anatomic localization within the orbit with navigation technology is equal with optical and electromagnetic system. The location of DRF does not affect the accuracy. Navigation-enabled skull models can be potentially useful as teaching tools for achieving the accurate radiological orientation of orbital and periorbital structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135409 | PMC |
http://dx.doi.org/10.2147/OPTH.S118079 | DOI Listing |
J Oral Biol Craniofac Res
December 2024
Department of Orthodontics, University of Washington, Seattle, USA.
Objective: To evaluate the pharyngeal airway dimensions and regional pharyngeal adipose distribution in the young adult minipig model.
Materials And Methods: Eight 7-8-months-old Yucatan minipigs, half male and female, were sedated and placed prone to scan the pharyngeal region. Magnetic resonance imaging (MRI) was performed using dynamic turbo-field echo (TFE)-sequence with respiratory gating and adipose-weighted sequence.
RSC Med Chem
December 2024
Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara 44121 Ferrara Italy
The N/OFQ-NOP receptor is a fascinating peptidergic system with the potential to be exploited for the development of analgesic drugs devoid of side effects associated with classical opioid signalling modulation. To date, up to four X-ray and cryo-EM structures of the NOP receptor in complex with the endogenous peptide agonist N/OFQ and three small molecule antagonists have been solved and released. Despite the available structural information, the details of selective small molecule agonist binding to the NOP receptor in the active state remain elusive.
View Article and Find Full Text PDFSci Rep
January 2025
College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
Multiple active mining faces and extensive excavations under thick-hard strata in deep coal mines result in frequent strong mine earthquakes, often accompanied by significant surface subsidence deformation. Understanding the specific law of surface movement and the spatiotemporal distribution response to intense mine earthquakes is crucial for effectively preventing and mitigating dynamic disasters in deep mines. Utilizing the key layer theory, the intricate strata of the Yingpanhao Coal Mine are systematically delineated, drawing upon the engineering context of working faces 2201 and 2202 within the Ordos Chemical Co.
View Article and Find Full Text PDFSci Data
January 2025
Laboratory of Molecular Ecological Genetics, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
The pituitary gland is a key endocrine gland with various physiological functions including metabolism, growth, and reproduction. It comprises several distinct cell populations that release multiple polypeptide hormones. Although the major endocrine cell types are conserved across taxa, the regulatory mechanisms of gene expression and chromatin organization in specific cell types remain poorly understood.
View Article and Find Full Text PDFSleep Health
January 2025
Department of Human and Development and Family Studies, Pennsylvania State University, University Park, Pennsylvania, USA.
Goal And Aims: One challenge using wearable sensors is nonwear time. Without a nonwear (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!