AI Article Synopsis

  • Researchers explored the venom of the scorpion Scorpio maurus palmatus to find compounds that could improve sperm motility, which is crucial for fertilization success.
  • A specific peptide containing disulfide bonds (73 amino acids long) was isolated, showing significant enhancement of sperm motility in multiple mammalian species, including humans.
  • The study involved analyzing various venom fractions, purifying the effective peptide, and testing its impact on sperm from both human and animal sources, revealing its potential applications in treating fertility issues.

Article Abstract

Study Question: Is it possible to identify original compounds that are able to enhance sperm motility from the venom of the scorpion Scorpio maurus palmatus?

Summary Answer: We identified a potent disulfide-rich peptide (DRP) of 73 amino acids that significantly improved the motility of fresh and frozen-thawed sperm in different mammalian species, including human, and improved fertilization outcome in mouse IVF experiments.

What Is Known Already: Any disturbance of sperm motility has a strong impact on fertilization and can lead to subfertility or infertility. Significant efforts have, therefore,  been made to identify pharmacological drugs that might improve sperm motility. Such compounds are particularly useful in azoospermia to improve testicular sperm extraction and in the domain of cryopreservation because the motility of frozen-thawed sperm is reduced.

Study Design, Size, Duration: This was a basic science/medical research study aimed at identifying original compounds from a library of venoms able to enhance mammalian sperm motility, including human. We first identified in the venom of a scorpion S. m. palmatus a fraction able to potently activate sperm motility. We next purified and characterized the compound by liquid chromatography, mass spectrometry and peptide synthesis. Finally, the potency and toxicity of both purified and synthetic versions of the identified compound on sperm motility were assessed using different in vitro tests in different mammalian species.

Participants/materials, Setting, Methods: For human sperm, biological samples were collected from normozoospermic donors and subfertile patients attending a reproduction department for diagnostic semen analysis. Testicular sperm was collected from cynomolgus monkeys (Macaca fascicularis) euthanized for the needs of specific authorized research projects. The peptide was also tested on bovine and mouse epidydimal sperm. We measured different sperm motility parameters with a computer-assisted sperm analysis system in the presence or absence of the peptide.

Main Results And The Role Of Chance: Size exclusion chromatography enabled us to isolate a fraction of the venom of S. m. palmatus able to increase sperm motility. By liquid chromatography and mass spectrometry, a peptide comprising 73 amino acids with 4 disulfide bridges was identified as responsible for the biological activity and called 'spermaurin'. The identity of spermaurin was confirmed by chemical synthesis. We showed that the peptide increased the motility of fresh and frozen-thawed human sperm. We observed that the potency of the peptide was higher on fresh ejaculated spermatozoa with a low motility, achieving a 100% increase of curvilinear velocity in poorly performing sperm. We also demonstrated that peptide is effective on bovine and mouse fresh epididymal, bovine frozen-thawed ejaculated and fresh non-human primate testicular sperm. Finally, in mouse IVF, the production of 2-cell embryos was increased by 24% when sperm were treated with the peptide.

Limitations, Reasons For Caution: This work is an in vitro evaluation of the ability of spermaurin to improve sperm motility parameters. Another limitation of this study is the small number of human sperm samples tested with the natural (n = 36) and synthetic (n = 12) peptides. Moreover, the effect of the peptide on IVF outcome was only tested in mouse and further tests with human and bovine gametes are required to confirm and extend this result in other mammalian species.

Wider Implications Of The Findings: This work confirms our initial study showing that venoms represent an interesting source of molecules that are able to modify sperm physiology. Moreover, this work presents the first demonstrated biological action of a venom peptide from the scorpion S. m. palmatus with sequence similarities to La1 peptide from Liocheles australasiae (Wood scorpion), a widespread family of DRPs.

Large Scale Data: Not applicable.

Study Funding/competing Interest(s): This work is part of the project 'LAB COM-14 LAB7 0004 01-LIPAV', funded by the program LabCom 2014 from the French Research Agency (ANR). Dr Arnoult reports grants from IMV Technologies during the conduct of the study. In addition, Drs Arnoult, Martinez, Ray and Schmitt have a patent EP16305642.7 pending containing some of the information presented in this manuscript.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molehr/gaw075DOI Listing

Publication Analysis

Top Keywords

sperm motility
40
sperm
23
motility
14
venom scorpion
12
testicular sperm
12
human sperm
12
peptide
11
scorpion scorpio
8
scorpio maurus
8
mammalian species
8

Similar Publications

Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm.

View Article and Find Full Text PDF

Background: Micronutrients such as vitamin B12 and D have recently gained attention for their potential roles in male reproductive health. Despite their significance, there's a critical gap in understanding their association with male infertility, particularly concerning suboptimal semen parameters. This study aimed to address this knowledge gap by examining serum vitamin B12 and D levels in infertile males, providing insights that could inform targeted interventions for couples facing male infertility challenges.

View Article and Find Full Text PDF

Crude oil contamination has been shown to impair reproduction in aquatic animals through carcinogenic and genotoxic properties. Here, we assessed the endocrine-disrupting function of crude oil on male reproductive system based on testicular histology, sex steroid hormones, and fertility endpoints in adult male goldfish (Carassius auratus), which were exposed to 0.02- to 2-mg/L crude oil for 21 days (Experiment #1) or to 5- to 250-mg/L crude oil for 9 days (Experiment #2).

View Article and Find Full Text PDF

Mitochondrial aspartate aminotransferase (GOT2) protein as a potential cryodamage biomarker in rooster spermatozoa cryopreservation.

Poult Sci

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Spermatozoa cryopreservation has been widely used for animal genetic conservation. Despite advances in chicken semen cryopreservation, the mechanism of spermatozoa cryodamage remains to be revealed. The cryopreservation process induces motion parameter decreased, structure damaged, proteomic and antioxidant system remodeled in spermatozoa.

View Article and Find Full Text PDF

A biomimetic sperm selection device for routine sperm selection.

Reprod Biomed Online

September 2024

University of Technology Sydney, Sydney, Australia; Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, Australia. Electronic address:

Research Question: Can a biomimetic microfluidic sperm sorter isolate motile sperm while minimizing DNA damage in comparison with density gradient centrifugation (DGC)?

Design: This was a two-phase study of 61 men, consisting of a proof-of-concept study with 21 donated semen samples in a university research laboratory, followed by a diagnostic andrology study with 40 consenting patients who presented at a fertility clinic for semen diagnostics. Each sample was split to perform DGC and microfluidic sperm selection (one-step sperm selection with 15 min of incubation) side-by-side. Outcomes evaluated included concentration, progressive motility, and DNA fragmentation index (DFI) of raw semen, and sperm isolated using DGC and the microfluidic device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!