Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341723PMC
http://dx.doi.org/10.1091/mbc.E16-07-0553DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
12
sonic hedgehog
8
shh signaling
8
mitochondrial fission
8
mitochondrial
6
neurons
6
shh
5
hedgehog pathway
4
pathway activation
4
activation increases
4

Similar Publications

Introduction: Intranasal (IN) deferoxamine (DFO) has emerged over the past decade as a promising therapeutic in preclinical experiments across neurodegenerative and neurovascular diseases. As an antioxidant iron chelator, its mechanisms are multimodal, involving the binding of brain iron and the consequent engagement of several pathways to counter pathogenesis across multiple diseases. We and other research groups have shown that IN DFO rescues cognitive impairment in several rodent models of Alzheimer Disease (AD).

View Article and Find Full Text PDF

Secretagogin regulates asynchronous and spontaneous glutamate release in hippocampal neurons through interaction with Doc2α.

Life Med

October 2023

State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Synaptic vesicle (SV) exocytosis is orchestrated by protein machineries consisting of the SNARE complex, Ca sensors, and their partners. Secretagogin (SCGN) is a Ca-binding protein involved in multiple forms of vesicle secretion. Although SCGN is implicated in multiple neurological disorders, its role in SV exocytosis in neurons remains unknown.

View Article and Find Full Text PDF

Tau oligomers impair memory and synaptic plasticity through the cellular prion protein.

Acta Neuropathol Commun

January 2025

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.

Deposition of abnormally phosphorylated tau aggregates is a central event leading to neuronal dysfunction and death in Alzheimer's disease (AD) and other tauopathies. Among tau aggregates, oligomers (TauOs) are considered the most toxic. AD brains show significant increase in TauOs compared to healthy controls, their concentration correlating with the severity of cognitive deficits and disease progression.

View Article and Find Full Text PDF

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.

View Article and Find Full Text PDF

Scaling of ventral hippocampal activity during anxiety.

J Neurosci

January 2025

Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.

The hippocampus supports a multiplicity of functions, with the dorsal region contributing to spatial representations and memory, and the ventral hippocampus (vH) being primarily involved in emotional processing. While spatial encoding has been extensively investigated, how the vH activity is tuned to emotional states, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!