Scn2b Deletion in Mice Results in Ventricular and Atrial Arrhythmias.

Circ Arrhythm Electrophysiol

From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.).

Published: December 2016

Background: Mutations in SCN2B, encoding voltage-gated sodium channel β2-subunits, are associated with human cardiac arrhythmias, including atrial fibrillation and Brugada syndrome. Because of this, we propose that β2-subunits play critical roles in the establishment or maintenance of normal cardiac electric activity in vivo.

Methods And Results: To understand the pathophysiological roles of β2 in the heart, we investigated the cardiac phenotype of Scn2b null mice. We observed reduced sodium and potassium current densities in ventricular myocytes, as well as conduction slowing in the right ventricular outflow tract region. Functional reentry, resulting from the interplay between slowed conduction, prolonged repolarization, and increased incidence of premature ventricular complexes, was found to underlie the mechanism of spontaneous polymorphic ventricular tachycardia. Scn5a transcript levels were similar in Scn2b null and wild-type ventricles, as were levels of Na1.5 protein, suggesting that similar to the previous work in neurons, the major function of β2-subunits in the ventricle is to chaperone voltage-gated sodium channel α-subunits to the plasma membrane. Interestingly, Scn2b deletion resulted in region-specific effects in the heart. Scn2b null atria had normal levels of sodium current density compared with wild type. Scn2b null hearts were more susceptible to atrial fibrillation, had increased levels of fibrosis, and higher repolarization dispersion than wild-type littermates.

Conclusions: Genetic deletion of Scn2b in mice results in ventricular and atrial arrhythmias, consistent with reported SCN2B mutations in human patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161227PMC
http://dx.doi.org/10.1161/CIRCEP.116.003923DOI Listing

Publication Analysis

Top Keywords

scn2b null
16
scn2b
9
scn2b deletion
8
mice ventricular
8
ventricular atrial
8
atrial arrhythmias
8
voltage-gated sodium
8
sodium channel
8
atrial fibrillation
8
ventricular
6

Similar Publications

Scn2b Deletion in Mice Results in Ventricular and Atrial Arrhythmias.

Circ Arrhythm Electrophysiol

December 2016

From the Department of Pharmacology, University of Michigan Medical School, Ann Arbor (Y.B., C.R.F., L.F.L.-S., C.C., L.L.I.); Center for Arrhythmia Research and Department of Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor (B.C.W., R.R.-M., J.A., H.H.V., J.J.); Leon H. Charney Division of Cardiology, New York University School of Medicine, NY (X.L., M.D.); Department of Pharmacology and Physiology, University of Rochester Medical Center, NY (D.S.A.); and Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis (Z.W.).

Background: Mutations in SCN2B, encoding voltage-gated sodium channel β2-subunits, are associated with human cardiac arrhythmias, including atrial fibrillation and Brugada syndrome. Because of this, we propose that β2-subunits play critical roles in the establishment or maintenance of normal cardiac electric activity in vivo.

Methods And Results: To understand the pathophysiological roles of β2 in the heart, we investigated the cardiac phenotype of Scn2b null mice.

View Article and Find Full Text PDF

The effects of eslicarbazepine on persistent Na⁺ current and the role of the Na⁺ channel β subunits.

Epilepsy Res

February 2014

University of Bonn, Department of Epileptology, Laboratory for Experimental Epileptology and Cognition Research, Bonn, Germany; University of Bonn, Department of Neurology, Bonn, Germany.

Eslicarbazepine is the major active metabolite of eslicarbazepine acetate, a once-daily antiepileptic drug approved in Europe as adjunctive therapy for refractory partial-onset seizures in adults. This study was aimed to determine the effects of eslicarbazepine on persistent Na(+) currents (INaP) and the role of β subunits in modulating these effects. To study the role of β subunits of the Na(+) channel we used a mouse line genetically lacking either the β1 or β2 subunit, encoded by the SCN1B or SCN2B gene, respectively.

View Article and Find Full Text PDF

Voltage-gated Na(+) channels in the brain are composed of a single pore-forming α subunit, one non-covalently linked β subunit (β1 or β3), and one disulfide-linked β subunit (β2 or β4). The final step in Na(+) channel biosynthesis in central neurons is concomitant α-β2 disulfide linkage and insertion into the plasma membrane. Consistent with this, Scn2b (encoding β2) null mice have reduced Na(+) channel cell surface expression in neurons, and action potential conduction is compromised.

View Article and Find Full Text PDF

Nociceptive dorsal root ganglion (DRG) neurons express tetrodotoxin-sensitive (TTX-S) and -resistant (TTX-R) Na(+) current (I(Na)) mediated by voltage-gated Na(+) channels (VGSCs). In nociceptive DRG neurons, VGSC β2 subunits, encoded by Scn2b, selectively regulate TTX-S α subunit mRNA and protein expression, ultimately resulting in changes in pain sensitivity. We hypothesized that VGSCs in nociceptive DRG neurons may also be regulated by β1 subunits, encoded by Scn1b.

View Article and Find Full Text PDF

Neuronal excitability is critically determined by the properties of voltage-gated Na(+) currents. Fast transient Na(+) currents (I(NaT)) mediate the fast upstroke of action potentials, whereas low-voltage-activated persistent Na(+) currents (I(NaP)) contribute to subthreshold excitation. Na(+) channels are composed of a pore-forming alpha subunit and beta subunits, which modify the biophysical properties of alpha subunits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!