A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. | LitMetric

A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen.

Insect Biochem Mol Biol

Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands; Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium. Electronic address:

Published: January 2017

Cyflumetofen is a recently introduced acaricide with a novel mode of action, acting as an inhibitor of complex II of mitochondrial electron transport chain. It is activated by hydrolysis and the resulting de-esterified metabolite is a much stronger inhibitor. Cyflumetofen represents a great addition for the control of mite species including Tetranychus urticae, a major agricultural pest, which has the ability to develop resistance to most classes of pesticides rapidly. A resistant strain (Tu008R) was recently described and synergism experiments pointed towards the involvement of GSTs. Here, we conducted genome-wide gene expression analysis, comparing Tu008R with its parental susceptible strain, and identified the delta GST TuGSTd05 as the prime resistance-conferring candidate. Docking analysis suggests that both cyflumetofen and its de-esterified metabolite are potential substrates for conjugation by TuGSTd05. Several amino acids were identified that might be involved in the interaction, with Y107 and N103 possibly having an important role. To further investigate interaction as well as the role of Y107 and N103 in vitro, we recombinantly expressed and kinetically characterized the wild type TuGSTd05, TuGSTd05 Y107F and TuGSTd05 N103L mutants. While cyflumetofen was not found to act as a strong inhibitor, the de-esterified metabolite showed strong affinity for TuGSTd05 (IC = 4 μM), which could serve as a mechanism of rapid detoxification. Y107 and N103 might contribute to this interaction. HPLC-MS analysis provided solid indications that TuGSTd05 catalyzes the conjugation of ionized glutathione (GS) to cyflumetofen and/or its de-esterified metabolite and the resulting metabolite and possible site of attack were identified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2016.12.003DOI Listing

Publication Analysis

Top Keywords

de-esterified metabolite
16
y107 n103
12
tetranychus urticae
8
inhibitor cyflumetofen
8
tugstd05
7
cyflumetofen
6
metabolite
5
glutathione-s-transferase tugstd05
4
tugstd05 associated
4
associated acaricide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!